The Pre-Eclampsia Gene STOX1 Controls a Conserved Pathway in Placenta and Brain Upregulated in Late-Onset Alzheimer’s Disease

Marie van Dijka, Jan van Bezua, Ankie Poutsmaa, Robert Veerhuisa,b, Annemieke J. Rozemullerb, Wiep Scheperc, Marinus A. Blankensteina and Cees B. Oudejansa,∗

aDepartment of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
bDepartment of Pathology, VU University Medical Center, Amsterdam, The Netherlands
cNeurogenetics Laboratory, Academic Medical Center, Amsterdam, The Netherlands

Accepted 24 August 2009

SUPPLEMENTARY METHODS

Quantitative analysis of STOX1 transcripts

The adult tissue RNA array was obtained from Ambion (FirstChoice Human Total RNA Survey Panel). RNA from human extravillous trophoblast (SGHPL5 cell line) was obtained as described \cite{1,2}. For isolation of RNA from the hippocampal region of nondemented controls ($n = 2$, aged 77 and 81) and brains with advanced AD ($n = 2$, aged 72 and 85), between 50–100 cryostat sections (20 μm each) were cut from each patient sample (obtained through the Netherlands Brainbank) and immediately mixed with RNABee followed by RNeasy isolation including DNase treatment (Qiagen) according to the manufacturer’s instructions. STOX1 transcript analysis was performed by quantitative RT-PCR on the ABI 7300 using TaqMan probes and the Superscript II One Step RT-PCR system (In-VitroGen) with the inclusion of 1 M betaine and ROX reference dye. In brief, reactions (50 μl) containing

\[\text{ISSN} \ 1387-2877/10/$27.50 \ 2010 – \text{IOS Press and the authors. All rights reserved} \]
Supplementary Figure 2. STOX1A antibody specificity. The specificity of the STOX1A antibody was tested by downregulating STOX1 using siRNAs in placenta decidua co-cultures \((n = 4\). A clear downregulation of STOX1 positive cells (indicated by arrows) can be detected around transformed spiral arteries (A). A second confirmation of specificity was provided by peptide competition; cells were stained with STOX1 antibody in absence or presence of STOX1 peptide (B). Bars are 40 \(\mu\text{m}\).

100 ng total RNA were subjected to reverse transcription for 30 min at 50°C, followed by inactivation of the RT enzyme at 95°C for 2 min and PCR consisting of 50 cycles with 1 min at 95°C and 2 min at 60°C. Forward primers for transcripts A and D, B and E, and C and F were localized in exon 3B, junction of exons 3A and 4, and junction of exons 2 and 4, respectively. Reverse primers for A, B and C and for D, E and F were localized in exon 4 and 5, respectively. The Taq-Man probe was complementary to a sequence of exon 4 shared by all transcripts and PCR products. Primer and probe sequences are available upon request. Each sample was measured in triplicate.

REFERENCES

Supplementary Figure 3. STOX1A expression in transfected cells. Western blot analysis of GFP on lysates of SK-N-SH cells stable transfected with AβPP and SGHPL5 cells to ensure protein expression of STOX1 after transfection with mock (GFP-only) or STOX1A recombinant protein.
Supplementary Figure 4. High expression of STOX1 transcripts in brain and reproductive organs. Quantitative RT-PCR performed for six STOX1 transcripts (A-F) using total RNA from 20 different adult tissues as well as from extravillous trophoblasts. Copy numbers are given in mean ± SEM. High expression of transcript A (∼ 400,000 copies/100 ng total RNA) is seen in brain and ovary (A). The expression patterns of transcripts B and C are reciprocal in ovary and testis (B, C). Transcripts D, E, and F, that differ in their 3'-untranslated region from transcripts A, B, and C, but encode the same 3 isoforms, are expressed at background levels (D, E, F).
Supplementary Figure 5. Increased STOX1 mRNA expression in advanced stages of LOAD. The STOX1A/PBGD ratio of RNA expression was increased when comparing hippocampal expression in non-demented controls (Braak 1–2) with LOAD patients (Braak 5–6). All bars are mean ± SEM. Connecting brackets with * indicate $P < 0.05$ (t-test).
Supplementary Figure 6. STOX1 colocalizes in tau tangle positive cells and microglia. STOX1A is expressed around Aβ plaques and within the cytoplasm of tau tangle positive cells. In an area with high CD11b expression identifying the microglial cells, STOX1 can be found in the nuclei. A fluorescent double labeling shows STOX1 in the nucleus with CD11b staining the cytoplasm of the cell. Bars are 150 µm, except the fluorescent labeling in which the bar indicates 5 µm.
Supplementary Figure 7. STOX1 is expressed in the nucleus of granular neurons. STOX1A expression can be found in the nuclei of granular neurons of the dentate gyrus. Bar is 5 µm.

Supplementary Figure 8. STOX1A expression in placenta does not lead to increased AβPP processing. STOX1A expression in the nuclei of invasive trophoblasts (the cells primarily affected in pre-eclampsia) of the placenta bed, including trophoblast cells from the anchoring villi (AV), endovascular trophoblasts within (ET) and perivascular trophoblast cells (PT) surrounding the spiral arteries (A). In dividing trophoblast cells endogenous STOX1A is colocalized with the microtubuli network of the mitotic spindle (B). Western blot analysis of sAβPPα on supernatant of SGHPL5 trophoblast cells showing no decrease of sAβPPα after transfection with GFP-STOX1A constructs compared to mock (GFP only) (C). Bars are 40 µm.