Supplementary Data

Grape Derived Polyphenols Attenuate Tau Neuropathology in a Mouse Model of Alzheimer’s Disease

Jun Wanga,1, Ismael Santa-Mariaa,b,1, Lap Hoa,c, Hanna Ksiezak-Redinga,c, Kenjiro Onod,e, David B. Teplowe and Giulio Maria Pasinettia,c,∗

aDepartment of Neurology and Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
bAlzheimer Disease Research Unit, CIEN Foundation-Queen Sofia Foundation, Madrid, Spain
cGeriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
dKanazawa University Graduate School of Medical Science, Takara-Machi, Kanazawa, Japan
eDepartment of Neurology, David Geffen School of Medicine, and Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA, USA

1These authors contributed equally to this study.

∗Correspondence to: Giulio Maria Pasinetti, Mount Sinai School of Medicine, Department of Neurology, One Gustave L. Levy Place, Box 1137, New York, NY 10029, USA. Tel.: +1 212 241 7938; Fax: +1 212 876 9042; E-mail: giulio.pasinetti@mssm.edu.

ISSN 1387-2877/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved
Supplementary Fig. 1. Immunohistochemical analysis of paraffin-embedded brain sections of cortex and hippocampus from control (CTRL) and GSPE-treated TMHT mice, using antibody AT270 which specifically recognizes the phospho-thr181 of tau protein and counter stained with hematoxylin; Arrows indicate neurons with positive phospho-tau staining.