Supplementary Data

Endogenous Galanin Protects Mouse Hippocampal Neurons Against Amyloid Toxicity in vitro via Activation of Galanin Receptor-2

Caroline R. Elliott-Hunt, Fiona E. Holmes, Dean M. Hartley, Sylvia Perez, Elliott J. Mufson and David Wynick

Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA

Accepted 18 February 2011

Supplementary Figure 1. Preparations of Aβ1-42 were analyzed by electron microscopy. Incubation of Aβ1-42 at 37°C for 48 h in PBS produced a population that was predominantly 5–10 nm fibrils (Bar 200nm).

*Correspondence to: David Wynick, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK. Fax: 44 117 331 2288; E-mail: d.wynick@bristol.ac.uk and Elliott Mufson, Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612, USA. Fax: 00101.312.563 3571; E-mail: emufson@rush.edu.

ISSN 1387-2877/11/S27.50 © 2011 – IOS Press and the authors. All rights reserved
Supplementary Figure 2. Representative images of live (green) and dead (red) hippocampal neurons from WT (129OlaHsd) mice. A) Control with culture medium alone, (B) 48 h after exposure to 250 nM Aβ1-42, (C) 250 nM Aβ1-42 in the presence of 100 nM galanin, and (D) 250 nM Aβ1-42 in the presence of 100 nM Gal2-11. A marked reduction in the amount of cell death was observed in galanin and Gal2-11 treated cultures (see Fig. 3A for quantification).