## Supplementary Data

## Neuroinflammation, Hyperphosphorylated Tau, Diffuse Amyloid Plaques, and Down-Regulation of the Cellular Prion Protein in Air Pollution Exposed Children and Young Adults

Lilian Calderón-Garcidueñas<sup>a,b,\*</sup>, Michael Kavanaugh<sup>b</sup>, Michelle Block<sup>c</sup>, Amedeo D'Angiulli<sup>d</sup>, Ricardo Delgado-Chávez<sup>e</sup>, Ricardo Torres-Jardón<sup>f</sup>, Angelica González-Maciel<sup>a</sup>, Rafael Reynoso-Robles<sup>a</sup>, Norma Osnaya<sup>a</sup>, Rodolfo Villarreal-Calderon<sup>g</sup>, Ruixin Guo<sup>h</sup>, Zhaowei Hua<sup>h</sup>, Hongtu Zhu<sup>h</sup>, George Perry<sup>i</sup> and Philippe Diaz<sup>j</sup> <sup>a</sup>Instituto Nacional de Pediatría, Mexico City, Mexico <sup>b</sup>The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT, USA <sup>c</sup>Virginia Commonwealth University Medical Campus, Richmond, VA, USA <sup>d</sup>Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada <sup>e</sup>Pathology Department, Instituto Nacional de Cancerologia, Mexico City, Mexico <sup>f</sup>Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico <sup>g</sup>Davidson Honors College, The University of Montana, Missoula, MT, USA <sup>h</sup>Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA <sup>i</sup>College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA

Handling Editor: Massimo Tabaton

Accepted 17 August 2011

<sup>\*</sup>Correspondence to: Lilian Calderón-Garcidueñas, MD Ph.D., The Center for Structural and Functional Neurosciences, The University of Montana, 32 Campus Drive, 287 Skaggs Building, Missoula, MT 59812, USA. E-mail: lilian.calderon-garciduenas@umontana.edu.

| Supplementary Table 1                                                          |
|--------------------------------------------------------------------------------|
| mRNA IL-1 $\beta$ expression in frontal samples in controls (CTLs) ( $n = 8$ ) |
| versus Mexico City (MC) children and young adult cohorts ( $n = 35$ )          |

| Values of      | IL-1β CTL | IL-1β MC |
|----------------|-----------|----------|
| selected gene* |           |          |
| Mean           | 1725      | 11214.4† |
| SD             | 487.5     | 7318.76  |
| SEM            | 243       | 2314.39  |
|                |           |          |

\*The amount of IL-1 $\beta$  cDNA in each sample was normalized to the amount of GAPDH cDNA yielding an index: molecules per femtomol of GAPDH proportional to the relative abundance of each mRNA sample.  $\dagger p = 0.0008$ 

| Supplementary Table 2                                                             |
|-----------------------------------------------------------------------------------|
| NFκB signaling. Gene expression changes identified in the microarray analysis are |
| listed in order from highest to lowest                                            |

| Symbol  | Gene name                                    | Fold change |
|---------|----------------------------------------------|-------------|
| FOS     | G0/G1 switch regulatory protein 7            | 5.78        |
| IL1R1   | Interleukin 1 receptor, type 1               | 3.41        |
| SLC44A2 | Choline transporter-like protein 2           | 3.16        |
| CASP1   | Caspase 1                                    | 3.14        |
| IL1B    | Interleukin 1 beta                           | 3.12        |
| CCL2    | Chemokine (C-C motif) ligand 2               | 2.50        |
| CHUK    | Conserved helix-loop-helix ubiquitous kinase | -4.76       |
| EDG2    | Lysophosphatidic acid receptor Edg-2         | -3.58       |
| TBK1    | TANK-binding kinase 1                        | -3.27       |
| F2R     | Coagulation factor II (thrombin) receptor    | -2.45       |
| ELK1    | ELK1, member of ETS oncogene family          | -2.19       |
| IRAK1   | Interleukin-1 receptor-associated kinase 1   | -2.16       |

## Supplementary Table 3

## DNA damage signaling. Gene expression changes identified in the microarray analysis are listed in order from highest to lowest

| Symbol  | Gene name                                              | Fold change |
|---------|--------------------------------------------------------|-------------|
| BTG2    | BTG family member 2                                    | 6.83        |
| CHEK2   | CHK2 check point homolog                               | 3.19        |
| CIDEA   | Cell death-inducing DFFA-like effector A               | 2.70        |
| GADD45A | Growth arrest and DNA-damage-inducible, alpha          | 2.48        |
| BRCA1   | Breast cancer 1, early onset                           | 2.35        |
| SEMA4A  | Sema domain, immunoglobulin domain (Ig)                | -3.20       |
| SESN1   | Sestrin 1                                              | -2.46       |
| HUS1    | Checkpoint homolog                                     | -2.42       |
| RAD21   | RAD21 homolog                                          | -2.18       |
| MSH2    | MutS homolog 2, colon cancer, nonpolyposis type 1      | -2.17       |
| AIFM1   | Apoptosis-inducing factor, mitochondrion-associated, 1 | -2.13       |
| MLH1    | MutL homolog 1, colon cancer, nonpolyposis type 2      | -2.02       |

Supplementary Table 4

Inflammasomes signaling pathway genes up regulated in frontal MC versus control samples.

| Symbol | Gene name                         | Fold change |
|--------|-----------------------------------|-------------|
| NEMO   | $NF\kappa B$ essential modulator  | 18.38       |
| CCL-2  | Chemokine (C-C motif) ligand 2    | 13.74       |
| PYDC1  | PYD (pyrin domain) containing 1   | 13.18       |
| IL12A  | Interleukin 12A                   | 11.96       |
| PYCARD | Pyrin-domain containing protein 1 | 9.58        |

| (commed)  |                                                                      |             |  |
|-----------|----------------------------------------------------------------------|-------------|--|
| Symbol    | Gene name                                                            | Fold change |  |
| MAPK12    | Mitogen-activated protein kinase 12                                  | 9.38        |  |
| RIPK2     | Receptor-interacting serine-threonine kinase 2                       | 7.41        |  |
| CASP4     | Caspase 4                                                            | 6.96        |  |
| IKBKB     | Inhibitor of kappa light polypeptide gene enhancer in B-cells        | 6.77        |  |
| MAPK13    | Mitogen-activated protein kinase 13                                  | 6.28        |  |
| BCL2      | B-cell CLL/lymphoma 2                                                | 5.62        |  |
| MAPK11    | Mitogen-activated protein kinase 11                                  | 5.46        |  |
| P2RX7     | Purinergic receptor P2×, ligand-gated ion channel, 7                 | 5.17        |  |
| TXNIP     | Thioredoxin interacting protein                                      | 5.10        |  |
| RELA      | v-rel reticuloendotheliosis viral oncogene homolog A                 | 4.59        |  |
| BCL2L1    | bcl-2-like protein                                                   | 4.56        |  |
| NAIP      | NLR family, apoptosis inhibitory protein                             | 3.94        |  |
| CFLAR     | CASP8 and FADD-like apoptosis regulator                              | 3.94        |  |
| TRAF6     | TNF receptor-associated factor 6                                     | 3.92        |  |
| MAP3K7IP1 | Mitogen-activated protein kinase kinase kinase 7 inhibitory protein1 | 3.84        |  |
| PTGS2     | cyclooxygenase-2                                                     | 3.66        |  |
| XIAP      | X-linked inhibitor of apoptosis                                      | 3.34        |  |
| IRF2      | Interferon regulatory factor 2                                       | 3.05        |  |
| NLRC4     | NLR family, CARD domain containing 4                                 | 2.93        |  |
| MAPK1     | Mitogen-activated protein kinase 1                                   | 2.77        |  |
| RAGE      | Renal cell carcinoma antigen (MOK protein kinase)                    | 2.57        |  |
| MAPK3     | Mitogen-activated protein kinase 3                                   | 2.30        |  |

Supplementary Table 4 (Continued)



Supplementary Figure. 1.