Supplementary Data

Apolipoprotein ε4 Modulates Phenotype of Butyrylcholinesterase in CSF of Patients with Alzheimer’s Disease

Taher Darreh-Shori, Manar Siawesha, Malahat Mousavi, Niels Andreasen and Agneta Nordberg

Division of Alzheimer Neurobiology Center, Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Stockholm, Sweden

Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden

Accepted 14 September 2011

Supplementary Figure 1. Ratio of the levels of the functional to total butyrylcholinesterase protein in relation to the BCHE-K and APOE4 genotypes. A) CSF protein levels of functionally intact BuChE molecules decreases in a BCHE-K gene-dose dependent manner among the AD patients. B) A strong influence by the APOE4 allele in this regard as can be appreciated by approximately 40% differences between APOE4 carriers and non-carriers among the K− group (highlighted by the Braces in B). Data are given as percentages of mean values for the K++ group and SEM. *p < 0.05 and **p < 0.01 compared to the K++ group. ##p < 0.01 between the K+ and the K− groups among APOE4 carriers (B). *p < 0.01 between the APOE4 and non-APOE4 groups among the K− group (B). The BuChEF/T ratio denotes the proportion of the BuChE protein with intact or preserved enzymatic activity compared to the total protein levels of the enzyme in CSF and may be considered as a measure of stability or turnover rate of the enzyme in CSF [1, 2]. K++ and K+− = Homozygotes and heterozygotes of BCHE-K allele, respectively. K−− = non-carriers of K-allele.

Correspondence to: Taher Darreh-Shori, PhD, Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Alzheimer Neurobiology, Novum Floor 4th, 141 86 Stockholm, Sweden. Tel.: +46 8 585 863 12; Fax: +46 8 585 854 70; E-mail: Taher.Darreh-Shori@ki.se.

ISSN 1387-2877/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved
REFERENCES
