Endoplasmic Reticulum Stress Induces Tau Pathology and Forms a Vicious Cycle: Implication in Alzheimer’s Disease Pathogenesis

Yuen-Shan Ho, Xifei Yang, Jeffery Chi-Fai Lau, Clara Hui-Ling Hung, Suthicha Wuwongse, Qishan Zhang, Jianzhi Wang, Larry Baum, Kwok-Fai So and Raymond Chuen-Chung Chang

Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
Shenzhen Centre of Disease Control and Prevention, Shenzhen, China
Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

Handling Associate Editor: Zhizhong Guan

Accepted 25 October 2011
Supplementary Figure 1. Okadaic acid (OA)-induced hyperphosphorylation of tau led to endoplasmic reticulum-stress in primary cultures of hippocampal neurons. OA (50 nM) was added to neuronal cultures and incubated for 6 h to induce tau hyperphosphorylation. The neurons were fixed with 4% paraformaldehyde and stained with specific antibodies against p-eIF2α, p-PERK, and p-Tau (231). Representative photos of each group are shown, magnification = 400X. The level of p-Tau (231) was markedly increased in the OA-treated group. In the same time, the levels of p-eIF2α and p-PERK were also increased.

Supplementary Figure 2. Thapsigargin (Tg)-induced unfolded protein response (UPR) and phosphorylation of tau in primary cultures of hippocampal neurons. Thapsigargin (10 nM) was added to neuronal cultures and incubated for 6 h to induce endoplasmic reticulum-stress. The neurons were fixed with 4% paraformaldehyde and stained with specific antibodies against p-Tau (231), p-Tau (396), Tau 5, and p-PERK. Representative photos of each group are shown, magnification = 400X. The level of p-PERK, a UPR marker, was elevated in the thapsigargin-treated group. In the same time, the levels of p-Tau (231) and p-Tau (396) were also increased. The level of total tau, which was detected by the Tau 5 antibody, remained unchanged.
Supplementary Figure 3. Levels of total tau were further confirmed by using the K9JA antibody. A) The pattern of total tau detected by K9JA antibody in okadaic acid (OA)-treated cultures was similar to those detected by the Tau 5 antibody in Fig. 2A. B) The pattern of total tau detected by K9JA antibody in thapsigargin (Tg)-treated cultures was similar to those detected by the Tau 5 antibody in Fig. 3E.