Supplementary Data

Formononetin Protects Neurons Against Hypoxia-Induced Cytotoxicity Through Upregulation of ADAM10 and sAβPPα

Miao Sun1, Ting Zhou2, Liang Zhou1,1, Qiang Chen1,∗, Yan Yu1, Huan Yang2, Kairin Zhong1, Ximeng Zhang4, Feng Xu3, Shaoqing Cui3, Albert Yu5, Hui Zhang6, Ruizhong Xiao7, Dongsheng Xiao7 and Dehua Chui1,∗

1Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Beijing, China
2Department of Neurology, Ningbo Beilun Hospitals, Ningbo, China
3Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
4Department of Neurology, Peking University Third Hospital, Beijing, China

Handling Associate Editor: Chengxin Gong

Accepted 16 October 2011

1 These authors contributed equally to this paper.
∗Correspondence to: Dr. Dehua Chui, Neuroscience Research Institute, Peking University Health Science Center, 38 Xueyuan Road, Hai Dian District, 100191, Beijing, China. E-mail: dchui@bjmu.edu.cn or Dr. Qiang Chen, Department of Neurology, Ningbo Beilun Hospitals, Ningbo 315806, China. E-mail: chen727127@163.com.
Formononetin (FRM) did not influence BACE-1 activity or amount of CTF-β level. Cell was treated with hypoxia for 18 h and then cell lysates were collected for different measurements as follows: A) CTF-α and CTF-β were measured by western blot, in the presence or absence of FRM. Lane 1 was represented pretreatment of DAPT as positive control. B) Statistical results of CTF-α in different groups. C) BACE-1 activity was measured under same condition. All data were represented as a mean ± S.D. from triplicate independent experiments.

* \(p < 0.05 \), ** \(p < 0.01 \).