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Recent advances in the understanding of the
role of synaptic proteins in Alzheimer’s
Disease and other neurodegenerative
disorders
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Synaptic damage is an early pathological event common to
many neurodegenerative disorders such as Alzheimer’s dis-
ease (AD) and is the best correlate to the cognitive impair-
ment. Several molecules involved in AD and in other neu-
rodegenerative disorders play an important role in synaptic
function and when misfolded aggregate and form amyloid fib-
rils. Synaptic proteins with an amyloid domain include amy-
loid β-protein precursor, prion protein, huntingtin, ataxin-1
andα-synuclein. Two of the possible mechanisms by which
alterations in synaptic proteins lead to synapse damage are:
1) misfolded or aggregated synaptic molecules have lost their
normal function and/or 2) they have gained a toxic capacity.
Recent studies support the possibility that while oligomers
are toxic, polymers might be inactive. The mechanisms by
which oligomers trigger synapse loss could be related to their
ability to triggers stress signals once they enter the nucleus
and/or accumulate at the endoplasmic reticulum.

1. Introduction

Neurodegenerative disorders are characterized by
damage to selective neuronal populations [22], synapse
loss, formation of inclusion bodies, extracellular de-
position of amyloid proteins and gliosis (for review
see [37,39]). There exists significant controversy in
understanding which of these pathological events are
primary and which ones are secondary (Fig. 1). Studies
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in the brains of patients with pre-clinical Alzheimer’s
disease (AD) [3,36], as well as in transgenic animal
models [51], support the notion that synaptic damage
occurs early in disease progression. This early disrup-
tion of synaptic connections in the brain results in neu-
ronal dysfunction that, in turn, leads to the characteris-
tic symptoms of dementia and/or motor impairment ob-
served in several neurodegenerative disorders [37,39,
44,65]. However, additional studies are necessary to
confirm this possibility especially in view of reports that
have not shown neuronal loss in amyloidβ-protein pre-
cursor (AβPP) transgenic mice [25]. In addition, other
studies have implicated the formation of neurofibrillary
tangles (NFTs) as responsible for synapse loss [7]. A
possible explanation of why some studies show early
synapse loss in AD while others do not, might be re-
lated in part to the region of the brain analyzed, the sen-
sitivity of the markers and assays used, and the com-
pensatory changes in the molecular response to neu-
ronal injury [40]. In this regard, in AD, disruption of
the perforant pathway circuitry is probably the earli-
est pathological event, followed by neuronal loss, and
plaque and tangle formation [3,5,24]. This indicates
that in AD the region of the brain where synapse loss
might occur is the outer molecular layer of the dentate
gyrus and that synaptic alterations in other brain regions
might be a later event. Interestingly, recent studies have
shown that many of the neuronal molecules affected in
neurodegenerative disorders play an important role in
the maintenance and functioning of the synaptic appa-
ratus [18,41], leading to the hypothesis that mutations
and other alterations of synaptic proteins might result
in particular neurodegenerative diseases (Table 1). In
this context, the concept of synapse loss has expanded
our understandingof neurodegenerationand has helped
to further elucidate the pathogenic mechanisms of this
process.
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Table 1
Synaptic proteins involved in neurodegenerative disorders

Molecule Synaptic localization Proposed function Disease

Amyloid β precursor protein pre- and post-synaptic LTP, glutamate transport Alzheimer’s disease
Presenilin post-synaptic γ-secretase, Notch signal ing Alzheimer’s disease
α-synuclein pre-synaptic synaptic signaling regulation (?) Alzheimer’s disease

Lewy body disease
Multiple system athrophy

Huntingtin Post-synaptic ? Huntington’s disease
Ataxin-1 neuronal, post-synaptic LTP Spinocerebellar ataxia
Prion Protein pre-synaptic LTP, neuroplasticity CJD and other

spongiform encephalitis
Frataxin pre-synaptic Mitochondrial regulation Friedreich ataxia

Fig. 1. Synaptic loss can be a primary or secondary event in the process leading to neurodegeneration.

This manuscript reviews some new thoughts as to
the potential mechanisms underlying the pathogenesis
of synaptic loss in neurodegenerative disorders.

2. Synaptic proteins in neurodegenerative
disorders

Several molecules involved in AD and other neurode-
generative disorders play an important role in synaptic
function (Table 1). Although, of course, there are many
other examples of neuronal proteins involved in neu-
rodegeneration that do not concentrate in the synapses
such as superoxide dismutase 1. Another important
common feature is that these synaptic proteins contain
an amyloidogenic domain, suggesting that mutations
and other stress-inducing factors might lead to aggre-

gation and abnormal conformation which, in turn, can
compromise synapse function (Fig. 2). Synaptic pro-
teins with an amyloid domain include, among others,
AβPP, prion protein (PrP), huntingtin (htt), ataxin-1
andα-synuclein (Table 1).

Remarkably, and in support of this concept, stud-
ies have shown that in Lewy body disease (LBD)
α-synuclein accumulates in Lewy bodies (LBs) [62,
63,68]. LBD is a heterogeneous group of disorders
presenting with parkinsonism and LB formation [47].
In accordance with the CDLB International Work-
shop [47], this group includes Parkinson’s disease (PD),
Diffuse LBD, Lewy body variant of AD and combined
PD + AD. Furthermore, mutations in theα-synuclein
gene are associated with rare familial forms of PD [32,
56]. α-Synuclein, a 140 aa molecule, was originally
identified in human brains as the precursor protein
of the non amyloid-β (Aβ) component (NAC) of AD
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Fig. 2. Misfolded synaptic proteins can form polymers and/or oligomers.

plaques [35,63]. NAC is a highly hydrophobic 35 aa do-
main within theα-synuclein molecule that is involved
in amyloid formation [27]. α-Synuclein is related to
other molecules, including humanβ-synuclein/bovine
phosphoneuroprotein 14 [29,52], which are highly ho-
mologous with (α-synuclein, but do not possess an
amyloidogenic domain [26]. This molecule has been
independently identified in a variety of biological sys-
tems in torpedo [34], rat [35] and human [29] and as
“synelfin” in the song bird [16]. Additional studies
have shown thatα-synuclein is a presynaptic nerve ter-
minal protein [16,26,29], leading to a hypothesis that it
may play a critical role in synaptic events, such as neu-
ral plasticity during development, learning [16] and de-

generation of nerve terminals under pathological con-
ditions in AD, PD and other disorders [6].

The α-synuclein molecule is capable of self-
aggregation to form amyloid-like fibrils [19]. Condi-
tions promoting this aggregation include mutations [53]
and oxidative stress [20,21]. Taken together, this sug-
gests that both mutations and stress conditions act in
a similar manner by promoting protein misfolding and
aggregation which, in turn, could result in the for-
mation of either inactive fibrils (polymers) or toxic
oligomers (Fig. 2). This is supported by recent studies
in transgenic mice [43] andDrososphila [13], showing
that expression of the wildtype or mutantα-synuclein
protein leads to dopaminergic synapse loss, inclusion
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body formation and motor deficits. These observations
are further supported by recent studies inα-synuclein-
transfected neuronal cell systems where accumulation
of this molecule results in dopaminergiccell death [75],
mitochondrial dysfunction and oxidative stress [23].

Interestingly, other molecules also linked to AD
pathogenesis have recently been shown to occupy a
predominant synaptic location. For example, AβPP
has a preferential localization at central and periph-
eral synaptic sites [2,42,58], suggesting a possible role
in neuroplasticity [50]. Furthermore, studies have
shown that secreted AβPP (sAβPP) fulfills synap-
totrophic [50,57] and neuroprotective functions within
the central nervous system (CNS) in response to exci-
totoxicity [46,49] and ischemia [4,61]. In transgenic
mice, abnormal expression of mutant forms of AβPP
results not only in amyloid deposition, but also in
widespread synaptic damage [15,45,54]. This synaptic
pathology occurs early and is associated with levels of
soluble Aβ1-42 rather than with plaque formation [51].
Similar results have also been reported in AD [33], sug-
gesting that free amyloid oligomers rather than large
aggregates might be involved in the process of synap-
tic damage in AD (Fig. 2). Another AD-associated
molecule – apolipoprotein E, which is primarily pro-
duced by glial cells, has been shown to accumulate
at the central and peripheral synaptic complexes [1]
and to play an important role in synaptic membrane
formation after injury [55]. Moreover the presenilins,
recently liked to familial AD [10], have been shown
to accumulate at the post-synaptic site [48] and to be
indispensable for CNS development [70].

Further evidence supporting the concept that ab-
normal accumulation of synaptic proteins could al-
ter synaptic function has been derived from studies in
Creutzfeldt-Jakob disease (CJD), where PrPCJD accu-
mulates in synapses [31] and amyloid plaques. More-
over, in CJD and other prion protein diseases pat-
terns of synaptophysin and SNAP25 (another synaptic-
associated molecule) immunostaining are abnormal, in-
dicating a primary synaptic alteration in these condi-
tions [9]. Previous studies have shown that in CJD, de-
pendingon the genetic alteration, PrP could accumulate
either in a plaque-like fashion or in the synapses [31].
Point mutation in codon 102 or 117/129 results in a
plaque-type PrP accumulation [30,31], while a point
mutation in codon 200 or no mutations in the PrP gene
results in synaptic-type accumulation [30,31]. Studies
in PrP-null mice have suggested that this molecule is
necessary for normal synaptic function [11].

Finally, other neurodegenerative diseases where
gene products have now been shown to be closely as-

sociated with synaptic complexes include Huntington’s
disease (HD) and myotonic dystrophy (DM). Hunt-
ingtin was reported to be a membrane-bound protein
with a distribution very similar to that of synaptic vesi-
cle protein synaptophysin [71]. Studies in human brain
detected htt in perikarya of some neurons, neuropil,
varicosities and as punctate staining likely to be nerve
endings [66]. In transgenic mice, expression of mu-
tant forms of htt leads to formation of intranuclear in-
clusions with amyloid-like characteristics. The ser-
ine/threonine kinase (DMK), which is the gene product
of the DM gene, was found to localize post-synaptically
at the neuromuscular junction of skeletal muscle and at
intercalated discs of cardiac tissue [69]. DMK was also
found at synaptic sites in the cerebellum, hippocam-
pus, midbrain and medulla [69]. Taken together, these
findings suggest that abnormal accumulation and func-
tioning of synaptic proteins might play an important
role in the pathogenesis of various neurodegenerative
disorders and points to the possibility that other disease
variants might be linked to not yet described mutations
in genes encoding for selected synaptic proteins.

In summary, similarly toα-synuclein, the other
synaptic proteins involved in neurodegenerative disor-
ders (such as AβPP, PrP, and htt) all contain a signifi-
cant amyloidogenic potential. Since mutations and/or
other stress factors such as oxidation might lead to pro-
tein misfolding and aggregation, the next question is
how accumulation of these proteins leads to synaptic
damage and neurodegeneration.

3. How does accumulation of synaptic proteins
lead to synaptic damage and
neurodegeneration?

The mechanisms triggering cell death and synaptic
damage in neurodegenerative disorders might be re-
lated to a gain of a toxic property and/or loss of func-
tion of specific synaptic proteins [59] (Fig. 3). For ex-
ample, it has been proposed that loss of function might
be important in the pathogenesis of DM and Friedre-
ich ataxia. Frataxin mutations result in decreased pro-
tein synthesis and mitochondrial dysfunction with ox-
idative stress [8]. In the case of DM, there is now
circumstantial evidence that long (CTG)n repeats may
affect the expression of any of at least three genes,
myotonic dystrophy protein kinase (DMPK), DMR-N9
(gene 59), and a DM-associated homeodomain protein
(DMAHP). Furthermore,new findings suggest that DM
is not simply a loss-of-function disorder, but that en-
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tirely new pathological pathways at the DNA, RNA, or
protein level may play a role in its manifestation [17].
This also appears to be the case in other diseases with
trinucleotide repeats such as HD and spinocerebellar
ataxia (SCA). In these disorders it was originally postu-
lated that the accumulation of aggregates, particularly
in the nucleus, was probably involved in triggering a se-
ries of events leading to neurodegeneration. However,
a series of experiments with mutant htt and ataxin-1
proteins [12] have shown that neither ubiquitinization
nor the presence of nuclear aggregates of the misfolded
proteins are necessary for toxicity [14]. Subsequent
experiments showed that nuclear localization is nec-
essary for toxicity, but it needs to be emphasized that
diffuse nuclear localization of oligomers appears to be
the toxic trigger. In contrast, large polymeric intranu-
clear inclusions might be considered either inactive or
a defense mechanism to isolate smaller toxic proteins
(Fig. 2).

In fact, in view of the studies discussed, the model
of cellular pathogenesis in trinucleotide expansion dis-
eases becomes both more complex and simpler, since
neither ubiquitination nor formation of nuclear aggre-
gates appears to contribute to toxicity. Although the
mechanisms underlying the case where a toxic portion
of the protein may cause disease remain unknown, it
has been previously proposed that the expansion may
cause the mutant protein to adopt a new conforma-
tion, leading to altered interactions with other proteins.
Several of these proteins including chaperones and the
ubiquitin-dependent proteolytic machinery may not be
important to toxicity. On the other hand, interacting
proteins such as transcription factors found within the
nucleus are prime candidates as the cause of toxicity,
which eventually leads to cell death [14].

As to α-synuclein, although by far this protein has
a wide range of actions, it is primarily localized to the
synapses [26], while small amounts are probably shut-
tled to the nucleus. This has been difficult to observe
in mammalian brain but, in fact, the name “synuclein”
derives from finding both synaptic and nuclear local-
ization of the protein in Torpedo [34]. In the brains of
transgenic mice, high expression levels ofα-synuclein
result in intranuclear localization of diffuse and aggre-
gated forms ofα-synuclein [43]. As to PrP, attempts to
investigate the role of nuclear localization in the patho-
genesis of neurodegeneration have shown that the pu-
tative nuclear localization signal in PrP is not efficient
at targeting the protein to the nucleus [28]. Thus, while
the mechanisms by which the protein triggers neurode-
generation remain unclear, alterations in the plasma
membrane are suspected to be involved [64].
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Fig. 3. Abnormal accumulation of synaptic proteins might lead to
neurodegeneration via loss of function or gain of toxicity.

Finally, the case of AβPP in AD although similar
in some respects, differs since the proteolytic toxic
product of AβPP namely Aβ1-42 is secreted, while
in trinucleotide repeat diseases, PrP disease and synu-
cleopathies the proteins are not secreted and are not
localized to the endoplasmic reticulum (ER) (Fig. 4).
Recent studies in AD also support the notion that large
amyloid polymers are probably not the primary source
of toxicity, but rather a mechanism for isolating more
toxic small molecules (Fig. 2). In contrast, accumu-
lation of intracellular oligomers of Aβ1-42 appears to
be highly toxic [60]. Although these mechanisms are
not yet clear, accumulation of misfolded proteins in
the ER might lead to stress signaling that eventually
can result in synapse loss and neurodegeneration via
pathways involving transcription factors, apoptosis and
caspase degradation [74]. As to this latter possibility,
some authors have now proposed the term “synaptosis”
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Fig. 4. Stress signaling via nuclear or endoplasmic reticulum local-
ization might lead to neurodegeneration.

to refer to the localized activation of caspases at the
synapse, resulting in nerve terminal “pruning” without
generalized cell death [73].

In summary, two potential pathways should be con-
sidered: one for synaptic proteins that ought to be se-
creted and another for synaptic proteins that are not
secreted (Fig. 4). As to the first pathway, abnormal
folding of secreted proteins such as Aβ1-42 might lead
to stress response at the ER which, in turn, could trig-
ger signaling events leading to synapse loss and neu-
ronal death [72]. In the second case, misfolding of
non secreted synaptic proteins such as htt, ataxin-1 and
α-synuclein could result in their translocation to the
nucleus where interactions with transcription factors

and/or other chaperones might trigger signaling events
leading to synapse loss and neuronal death.
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