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Molecular and cellular mediators of
Alzheimer’s disease inflammation

Ron Strohmeyer and Joseph Rogers∗
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Drive, Sun City, AZ 85351, USA

1. Introduction

A wide range of inflammatory mediators has been
demonstrated in the Alzheimer’s disease (AD) brain
during the past 15 years (for previous reviews, see [6,
279,298,340,343]). Questions nonetheless remain,
including even the designation of AD inflammatory
mechanisms as a true inflammatory response. Like
multiple sclerosis, the cardinal signs of peripheral in-
flammation, the “rubor et tumor cum calore et dolore”
(redness and swelling with heat and pain) that Cor-
nelius Celsus defined as criteria 2000 years ago, are not
present in AD. Indeed, AD inflammation does not ap-
pear to include even cell-mediated humoral lymphocyte
responses, as multiple sclerosis clearly does. Rather,
our current understanding of AD inflammation sug-
gests that it is an endogenously-mediated, localized re-
action, an innate inflammatory response similar to that
mounted in the periphery when localized tissue dam-
age and the chronic deposition of highly insoluble, ab-
normal material occurs. Such primarily macrophage-
mediated reactions have been classed as inflammatory
for over a century, and that designation, with glia as the
brain intermediaries, certainly should hold for AD.

Henry Wisniewski, who we honor by this special
journal issue, was one of the first to come to grips with
these simple principles of AD inflammation, and to ap-
ply them to other brain disorders. If we understand that
localized brain inflammation is likely to arise wherever
there is localized brain damage and deposits of highly
insoluble, abnormal material, then prion diseases be-
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come an obvious research target. Wisniewski and
his colleagues therefore looked for and found numer-
ous indices of localized inflammation in prion-infected
brain [195,214], just as McGeer and colleagues had
done in dopamine-degenerating areas of the Parkin-
son’s disease brain [274]. In fact, among his many
studies of multiple sclerosis and experimental allergic
encephalitis, Wisniewski pointed out that primary de-
myelination could be induced as a nonspecific conse-
quence of cell-mediated inflammatory actions in the
absence of autoantibodies to myelin [443]. This ob-
servation, published in 1975, presaged much of what
we now believe about localized inflammatory actions
in the AD brain.

A simplified view of AD inflammation also leads to
clearer understanding of the roots and roles that inflam-
matory mechanisms may play in AD. As a localized
response to tissue injury and the chronic presence of
abnormal, highly insoluble deposits, AD inflammation
is unlikely to be an AD etiology, although new data on
cytokine susceptibility polymorphisms [88,319] sug-
gest that it could in certain cases be a risk factor. That
it is a secondary response, however, does not mean that
AD inflammation is unimportant. In brain injury due
to head trauma, for example, the etiology, the blow to
the head, may cause less damage than the secondary
inflammatory response to it. Although eliminating the
head trauma is obviously the most satisfactory way to
handle the problem, once it has occurred it becomes im-
portant to control the inflammatory reaction. Similarly,
until we can eliminate the primary insult that causes
AD neurodegeneration and the deposition of amyloid
β peptide (Aβ) and neurofibrillary tangles, abrogating
the initiation of secondary inflammatory damage will
continue to be an important therapeutic target. Toward
that end, we attempt here to summarize the evidence
for a pathophysiologically relevant role of AD inflam-
mation, and to catalogue the many inflammatory medi-
ators present in affected areas of the AD brain.
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2. Cell mediators of inflammation in the AD brain

Although the new data on a vaccination approach to
removing Aβ by antibody-antigen mechanisms [355]
may yet bring surprises, to date there has been no con-
clusive evidence that antibodies or peripheral leuko-
cytes are normally involved in AD inflammation.
Rather, microglia and astrocytes appear capable of pro-
ducing nearly every pro-inflammatory component ob-
served thus far in the AD brain (Table 1). Surprisingly,
accumulating evidence indicates that neurons also sup-
plement the glial repertoire of pro-inflammatory fac-
tors, and oligodendrocytes and vascular endothelial
cells may contribute as well. For convenience, these
data are summarized in the accompanying table (Ta-
ble 1).

2.1. Astrocytes

Astrocytes are immunologically activated by vari-
ous challenges and respond to inflammatory mediators
in pleiotropic fashion, including activation of early re-
sponse genes and expression of various adhesion pro-
teins, cytokines, eicosanoids, proteases, and other cy-
totoxic molecules in vitro and in situ (Table 1) [93].
In addition to overt inflammatory actions, ectoenzymes
secreted by AD astrocytes may also play a role in de-
grading plaque Aβ [439], removing capillaries with
amyloid angiopathy [445], and degradingpaired helical
filaments (PHF) [334,460].

Activated astrocytes are transformed into “reac-
tive astrocytes” manifesting upregulated glial fibrillary
acidic protein (GFAP) expression, astrocytic swelling,
hypertrophy, hyperplasia, and gliosis [251,285]. In the
AD brain focal and diffuse astrocytosis develops [85,
90,149,252,253,334,354,360,460] and advanced AD
may include a nearly four-fold increase in astrocyte
numbers [354]. The astrocytes appear around ghost
tangles, dark neurons, capillaries ravaged by Aβ, ar-
eas of ischemic damage, and Aβ plaques. Astrocytes
exhibit distinct morphological characteristics in each
of these pathological interactions, possibly indicating
a distinct role in each. Astrocytic accrual in plaques
appears to be a reaction to focal extracellular Aβ accu-
mulation [85,253,254,444,445] and, with fibrillar Aβ
plaque development, is limited to the cerebral cortex
and subcortical gray matter. Although a few reactive
astrocytes are present in virtually all diffuse (noncon-
gophillic) plaques, their greatest densities occur in neu-
ritic plaques. Astrocytes are seldom associated with
dense core, non-neuritic (“burned out”) plaques [290].

The position of astrocytes in plaques differs from
that of microglia. Astrocyte somas form a corona at
the periphery of the neuritic halo that, in turn, may sur-
round a dense core Aβ deposit. Processes from the as-
trocytes cover and interdigitate the neurite layer [290]
in a manner reminiscent of glial scarring, and there is,
in fact, recent evidence that plaque-associated astro-
cytes may be creating barriers: microglial clearance of
deposited Aβ in culture is less efficient when astrocytes
are plated before the microglia than when microglia
alone are used [84,361]. This may be due to the fact
that astrocytes deposit proteoglycans that inhibit the
ability of microglia to clear plaques [84,361], consis-
tent with the conspicuous localization of proteoglycans
to plaques [376].

2.2. Microglia

Microglial cells constitute approximately 10–15%
of the cellular population in the brain [31,62,278].
It is generally accepted that microglia have a mono-
cytic origin [31,325,326]and by that derivation possess
an inherent macrophage-like phagocytic capacity [134,
206]. Microglial cells typically assume a resting (un-
activated) state, having a ramified appearance, express-
ing virtually no macrophage-like characteristics, and
exhibiting a very low turnover [31,205,212]. Acti-
vation of microglia causes them to assume an amoe-
boid morphology, to become phagocytic, and to ex-
press MHC II and numerous other macrophage-like
pro-inflammatory molecules (reviewed in [31,134,206,
307,427]).

Although in the normal brain microglia play neu-
rotrophic roles (reviewed in [31,386]), their potential
neurotoxic actions have been emphasized in AD re-
search. By numerous criteria microglia in the AD brain,
like microglia in a variety of neuropathologic condi-
tions [129,288,289,385,386], are appropriately consid-
ered to be activated [31]. These criteria include altered
morphology and increased expression of MHC II, cy-
tokines, chemokines, complement, other acute phase
proteins, and potential neurotoxins (Table 1), all of
which could contribute to localized or more widespread
CNS injury [31,307]. In some cases (e.g., comple-
ment) microglial production of these mediators in the
AD brain has been inferred from studies of isolated cul-
ture preparations, where expression can be unequivo-
cally attributed to a particular cell type. Limitations of
in situ hybridization – where the hybridization label is
not precisely localized due to scattering of the radioac-
tive signal and where the substantially greater mass of
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Table 1, continued

Marker ∆ in AD Pathology Cell Method

Nitrotyrosine (and derivatives) ↑ NFTs [140] HPLC
↑ Hippocampus, cortical regions, and CSF [152] IHC

Peroxynitrite ↑ Neurons and NFT bearing neurons [374,391] N
nitrotyrosine-modified proteins ↑ [140,152,374,391]
p22-phox (NADPH subunit) ↑ [415] IHC
MPO (myeloperoxidase) ↑ Plaques and associated microglia [337] M
Iron (Fe) ↑ Multiple brain regions [94,352,405]

↑ NFTs neurons vs non-NFT neurons in AD [139] N
↑ Plaques and associated microglia [145] M

Ferritin ↑ Plaque associated microglia [145] M
↑ Ferritin has more Fe in AD [117]

Melanotransferin ↑ Serum, CSF, plaque associated microglia [178,193] M
Lipid peroxidation ↑ Multiple brain regions [28,235,317,392] IHC
iNOS ↑ Hirano bodies, plaques, NFTs [216] N

Transcription Factors EMSA
NF-κB (p65) ↑ Parallel increase with COX-2 mRNA [245] IHC

↑ Hippocampus, entorhinal, temporal, and visual N
cortex neurons [110,187,199,401] IHC

↑ Nucleus Basalis cholinergic neurons [44] N WB
PPAR-γ ↑ Temporal cortex [198] WB
pCREB ↓ Phosphorylated CREB in hippocampus [461] IHC
ATF ↑ Cortical neurons [458] N ISH
c-fos ↑ Hippocampus neurons [239] N IHC

↑ Hippocampus neurons [255] N IHC
↑ Cortical and plaque associated astrocytes [22] A IHC
↑ PHF-1 expressing neurons [22] N IHC

c-jun ↑ Hippocampus neurons [247,255] N IHC
↑ Cortical and plaque associated astrocytes [22,111] A IHC
↑ PHF-1 expressing neurons [22] N IHC
↑ Meningeal and cerebral vessels with CAA [111] ISH

Krox24 ↑ Hippocampus neurons [247] N WB
STAT1 ↑ Temporal cortex [199]

Miscellaneous Receptors
Aβ-binding Receptors ↑ Upregulated on neurons and microglia [464,466] N,M IHC
RAGE ↑ Expressed on AD microglia [66,100,101,161] M IHC
MSR (macrophage scavenger
receptor)

↑ Plaques [66], (review [371])

FPR (fMLP receptor) ↑ Chemotactic for Aβ [234] (expressed on AD M IHC
microglia – D. Lorton personal communication)

Other Receptors
FcγR1 ↑ Activated microglia [11,274] M IHC
FcγR2 ↑ Activated microglia [274] M IHC

This table represents those factors that have been specifically detected in the AD brain and its related pathologies to date. It should
be noted that many more inflammatory factors and related proteins have been observed in cell culture and animal models. Thus,
this list, without a doubt, will continue to grow. Abbreviations: WB, western blot; IHC, immunohistochemistry; ISH, in situ
hybridization; ELISA or EIA, enzyme linked immunosorbent assay; PCR, (reverse transcriptase) polymerase chain reaction; EM,
electron microscopy; RIA, radio immunoassay; BA, bioassay; NB, northern blot; GC/MS, gas chromatography/mass spectroscopy;
HPLC, high pressure liquid chromatography; EMSA, electrophoretic mobility shift assay; N, neuron; A, astrocyte; M, microglia;
E, endothelia; O, oligodendroglia; NFTs, neurofibrillary tangles; ND, nondemented; AD, Alzheimer’s disease; CSF, cerebral spinal
fluid; MAC, membrane attack complex;↑, increased in AD compared to ND;↓, decreased in AD compared to ND;↔, no difference
between AD and ND; NC, not compared.

labelled neurons can easily obscure labelling of rela-
tively tiny microglia – have sometimes made it difficult
to confirm the culture observations. However, the fact
that activated macrophages, close cousins to microglia,
are known to express inflammatory mediators such as
complement lends confidence to the conclusions from
culture studies that microglia do so as well.

As do astrocytes, activated microglia cluster at sites
of aggregated Aβ deposition. However, microglia as-
sume a more central position and deeply interdigitate
plaques in contrast to the peripheral position of astro-
cytes. Like astrocytes, microglia are present in virtu-
ally all diffuse (noncongophilic) plaques, but the great-
est densities of microglia are in neuritic plaques. They
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are seldom associated with dense core, non-neuritic
(“burned out”) plaques [142,144]. This co-localization
of microglia and astrocytes with Aβ deposits provides
opportunities for intercellular inflammatory signaling.
IL-1β secreted by microglia, for example, induces as-
trocyte expression of S100β protein [367].

The clustering of microglia within plaques is readily
explained by chemotactic signaling by Aβ itself [79]
and by several inflammatory mediators that are associ-
ated with Aβ in senile plaques, including complement
activation fragments, cytokines, and chemokines (re-
viewed in [307]). In addition, AD microglia reportedly
upregulate their expression of the macrophage scav-
enger receptor (MSR) [100] and the receptor for ad-
vanced glycation end products (RAGE) [464], both of
which appear to have Aβ as ligands [100,464]. Stim-
ulation of the RAGE receptor with Aβ induces M-
CSF [466] in microglia just as it does in macrophages.
Similarly, adhesion of microglia to Aβ fibrils via
class A scavenger receptors leads to immobilization
of the cells and induces production of reactive oxygen
species [100,101]. It has also recently been demon-
strated that the chemotactic formyl peptide receptor
(FPR) binds Aβ, triggering G protein dependent cal-
cium mobilization and activation of chemokine signal
transduction pathways [234].

Aβ activates numerous signaling cascades within mi-
croglia [67,250,271] that are common to peripheral in-
flammatory responses. Among these are the tyrosine
kinase-based cascades [270,450], calcium-dependent
activation of Pyk2 and PKC pathways [67], and p38 and
ERKs MAP kinase cascades [67,270]. These, and cer-
tainly others, lead to the activation of transcription fac-
tors responsible for subsequent pro-inflammatory gene
expression. Furthermore, Aβ-stimulated activation of
intracellular signaling pathways in microglia leads to
production of reactive oxygen species through NADPH
oxidase, and to the synthesis and secretion of neurotox-
ins [68,83,271]and excitotoxins. Excitotoxins released
by activated microglia – for example, glutamate [329]
and quinolinic acid [104] – can cause significant den-
dritic pruning as these molecules act preferentially on
vulnerable subcellular synaptic and dendritic compart-
ments [265]. Notably, synapse loss is one of the most
consistent correlates of AD cognitive impairment [261,
403].

Beyond their chemotaxis and physical proximity to
Aβ deposits, the role of microglia in plaque evolution is
still incompletely understood. Several hypotheses have
been put forward involving synthesis, processing, and
catabolism of Aβ by microglia. Of least probability

is that microglia play a direct role in the synthesis of
amyloidβ protein precursor (AβPP) and deposition of
Aβ. Although cultured microglia can secrete Aβ and
metabolize AβPP in a manner that might favor Aβ de-
position [32,39], microglial AβPP mRNA expression
is yet to be demonstrated [358]. Conversely, neurons
in vivo and neurons in culture exhibit abundant expres-
sion of AβPP [213] and are postulated to be the primary
source of brain Aβ.

A potential role for microglia in processing AβPP
and Aβ is more tenable. Microglial aggregation within
amyloid-containing neuritic plaques is nearly univer-
sal, whereas it is rare or absent in diffuse plaques in AD,
normal aging [74,174,249,348], or AβPP transgenic
mice [120,381]. This association suggests that mi-
croglia, like peripheral macrophages in systemic amy-
loidosis [370], may be involved in the conversion of
nonfibrillar Aβ into amyloid fibrils. Such a possibility
is supported by many studies [76,141,248,353,427], in-
cluding ultrastructural observations consistent with the
possibility that microglia may participate in the laying
down of amyloid fibrils within plaques [445].

Finally, catabolism by microglia via phagocytosis
and/or degrading of Aβ deposits is another plausi-
ble prospect, in keeping with the emerging view that
amyloid burden in the AD brain is determined by a
dynamic balance between amyloid deposition and re-
moval [168]. Many laboratories have shown that mi-
croglia actively phagocytose exogenous fibrillar Aβ in
vivo and in culture [26,84,119,241,315,320,361,362,
369]. Although cultured AD microglia phagocytose
Aβ [241], it is presently unknown if they degrade it or
secrete it in some other form. That they remove Aβ
deposits, however, is strongly supported by the recent
demonstration of Aβ co-localized with a microglial ac-
tivation marker, MHC II, in Aβ-immunized PDAPP
transgenic mice, where amyloid deposits were appar-
ently cleared [355]. Phagocytosis in these mice likely
occurs via the variety of Aβ binding receptors and
by opsoninization for complement clearance. Interest-
ingly, however, the first classical pathway complement
component, C1q, binds to Aβ [5,63,180,433,435], and
has been suggested to block critical Aβ epitopes for
Aβ uptake by cultured microglia [438].

Although, phagocytosis of Aβ has generally been
considered beneficial, Aβ association with microglia,
as previously described, results in extensive activation
of signal transduction pathways leading to the forma-
tion of numerous pro-inflammatory, neurotoxic, and
excitotoxic molecules. Thus, there is also evidence that
this process may encourage microglial activation to a
neurocytopathic state [3,61,81,86,203,297,411].
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2.3. Neurons

In addition to astrocytes and microglia, neurons
themselves may exacerbate inflammatory reactions
in their vicinity and so contribute to their own de-
struction in AD. For example, neurons appear capa-
ble of producing inflammatory mediators. These in-
clude complement [115,323,363,402], cyclooxygenase
(COX) [155,303,309,314,407,459], pro-inflammatory
cytokines [48,51,138,301,316,394,399,465], the IL-6
receptor signal transducing component gp130 [169],
M-CSF [466], and others (Table 1). Virtually all of
these mediators are increased in the AD brain and have
classical pro-inflammatory roles that could foment neu-
rodegeneration.

3. Inflammatory constituents in the AD brain

3.1. Complement pathways, activation products,
defense proteins, receptors

The complement pathways (classical and alternative)
are composed of more than 30 proteins, many of them
serine proteases that can be sequentially activated as an
amplifying cascade. Both pathways converge at the C3
cleavage step and terminate in the pore-forming C5b9
membrane attack complex (MAC) (reviewed in [207,
296,318,441]). The transmembrane channel caused by
MAC assembly at the cell surface permits the free dif-
fusion of ions and small molecules into and out of the
cell, disrupting cellular homeostasis, especially Ca++

homeostasis, and ultimately resulting in cell lysis if a
sufficient number of MAC complexes have assembled
on the cell. Notably, the MAC can also cause bystander
lysis of healthy adjacent tissue [207,296,318,441]. In
order to hold the complement cascades in check under
normal circumstances, thereby protecting the host from
self-lysis of healthy cells, and in order to down-regulate
activated cascades during an immune response once the
stimulus is depleted [207], tight regulation by a number
of regulatory proteins is required [296,318,441]. Vir-
tually all the proteins and respective mRNAs for the
classical pathway, most of the alternative pathway, and
the majority of complement regulatory proteins have
been detected in the brain [115,182,363,388,430,470]
and nearly all are up-regulated in AD (reviewed in [307,
341,343,470]).

At the cellular level, three endogenous sources for
complement have been suggested. Microglia [146,243,
420,426,428] and astrocytes [123–125,220,429] in situ

and in culture appear to synthesize nearly all comple-
ment proteins. Remarkably, however, in situ hybridiza-
tion studies suggest that neurons exhibit more abundant
signal for complement mRNAs than any other cell type
in the AD brain and express virtually all the proteins
of the complement pathways [115,182,208,363,402].
Indeed, based on hybridization results, one study has
suggested that complement production in the AD brain
may be as great as that in the liver, the primary source
of complement in the periphery [470]. Thus, multiple
endogenous sources of complement exist in the brain,
and at least two of these, neurons and microglia, show
complement upregulation in AD.

β-pleated, fibrillar Aβ [4,63,180,339,433,435] and,
more recently, tau-containing neurofibrillary tan-
gles [342] have been shown to directly activate the clas-
sical complement pathway fully in vitro, and to do so
in the absence of antibody. Aβ activates the classical
pathway via charge-based binding between Aβ and the
collagen-like region of the C1q A chain [130,180,434].
Additionally, the hexameric structure of C1q appears
to facilitate further aggregation of Aβ by binding mul-
tiple Aβ molecules [434,436,437]. Direct, antibody-
independent activation of the alternative pathway by
β-pleated fibrillar Aβ has also been demonstrated [50,
388,432]. For the classical and alternative pathway,
activation appears to proceed via covalent ester-linked
complexes of Aβ with C3 [50], as is characteristic of
complement activation reactions.

In addition to Aβ aggregates and neurofibrillary
tangles, other potential sources for classical pathway
activation exist in the AD brain. Neurodegenera-
tion can ultimately expose DNA and neurofilaments to
the extracellular environment. DNA [130] and neu-
rofilaments [228] appear to interact with the C1q A
chain similar to other antibody-independent activators
of complement [130,181]. In addition,oligodendrocyte
myelin glycoprotein activates the complement path-
way in vitro [181], as do other myelin derived pro-
teins (reviewed in [379]). It is therefore possible that
the increased availability of complement in the AD
brain might ultimately impact myelinated axons, per-
haps helping to account for AD white matter changes
that have recently been noted [400].

In summary, Aβ and neurofibrillary tangles, which
represent highly insoluble deposits of abnormal pro-
teins, and the exposed cellular byproducts of degen-
eration, including neurofilaments, naked DNA, and
myelin fragments, appear to potently activate comple-
ment. This profuse and chronic presence in the AD
cortex of multiple complement activating sources, to-
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gether with a highly competent endogenous source for
complement production, makes it difficult to imagine
that a chronic state of complement activation would not
occur in the AD brain.

3.2. Cytokines and chemokines and related receptors

Cytokines and chemokines presumably subserve
similar intercellular and intracellular signaling pro-
cesses in microglia and astrocytes as they do in the pe-
riphery, although novel cytokine and chemokine mech-
anisms have been proposed in the CNS. Virtually all
the cytokines and chemokines that have been studied in
AD, especially the major pro-inflammatory mediators,
IL-1, IL-6, TNFα, IL-8, transforming growth factor-
β (TGF-β), and macrophage inflammatory protein-1α
(MIP-1α), are upregulated in AD compared to ND sam-
ples (Table 1) (reviewed in [307,453]).

Both cytokines and chemokines appear to pleiotrop-
ically activate numerous inflammatory response genes
in AD and most of these proteins are expressed by as-
trocytes, microglia, and in some cases, neurons. Aβ
appears to be capable of inducing the expression of cy-
tokines and chemokines in these cells, and cytokines
and chemokinesare often detected in Aβ plaques. Con-
comitantly, exaggerated cytokine levels appear to in-
duce increased expression of AβPP and Aβ.

Cytokine and chemokine expression has been re-
ported to wax and wane with plaque evolution, with
highest expression occurring in early diffuse and dense-
core neuritic plaques. Many of these factors seem to
have dystrophic effects on neurites within and neurons
around Aβ plaques, and may thereby play functional
roles in plaque evolution. Conversely, paradoxical neu-
roprotective roles have been suggested for a few of the
pro-inflammatory cytokines. These findings have most
often resulted from assays of isolated neuron cultures
or knockout preparations, and require confirmation un-
der conditions that permit cytokine interactions with
other cell types (e.g., glia) and systems (e.g., the vascu-
lature) (reviewed in [307]). Transgenic mice that over
express pro-inflammatory cytokines under the control
of brain-specific promoters consistently exhibit inflam-
matory pathology, with little or no evidence of neuro-
protection [19,52,153,380].

Two major pathophysiologic consequences of cy-
tokine and chemokine upregulation in the AD brain
have been proposed. First, there is the potential for
vicious cycles in which cytokines induce Aβ and Aβ
induces cytokines. Second, autocrine-paracrine cy-
tokine and chemokine interactions among cells pro-

ducing cytokines and chemokines are likely to occur,
with net effects on cellular responses that can be ad-
ditive, synergistic, inhibitory, or antagonistic [330].
Interactions among pro-inflammatory cytokines and
chemokines, for example, can result in synergistic ac-
tivities in cytokine production and actions, including
effects on Aβ secretion. Low levels of antagonistic
anti-inflammatory cytokines and receptors may further
compound chronic inflammation. Such a dysregula-
tion in the balance between pro-inflammatory and anti-
inflammatory mediators could lead to a deleterious am-
plification cycle of cellular activation and cytotoxic-
ity [331]. Thus, both cytokine-cytokine interactions
and cytokine interactions with existing AD pathology
may play critical roles in AD neuroinflammation.

3.3. Cyclooxygenase

Cyclooxygenase (COX) is an enzyme that plays a
pivotal role in the arachidonate cascade leading to
prostaglandin synthesis. COX helps to mediate pro-
duction of prostaglandins and other inflammatory fac-
tors and is itself upregulated by some of the same pro-
inflammatory mediators it induces [106,313,351,462].
Recently, two isoforms of COX, COX-1 and COX-2,
have been identified in the periphery and the brain (re-
viewed in [311]). Many cell types constitutively ex-
press COX-1, and the prostaglandins it helps produce
are not all pro-inflammatory. In contrast, COX-2 is
typically not constitutively expressed but is induced at
sites of inflammation, facilitating the induction of pro-
inflammatory prostaglandins. Because prostaglandins
are so deeply entwined with other inflammatory mech-
anisms, the inhibition of COX, with its attendant inhi-
bition of prostaglandins, has become a popular thera-
peutic target in AD.

Accumulating evidence indicates that COX-2 pro-
tein levels are increased in several areas of the AD
brain and may correlate with levels of Aβ and plaque
density [155,198,322]. As well, there is one report of
COX-2 protein colocalizing with tangle bearing neu-
rons in AD and Down’s syndrome cortex [314].

COX elevations influence multiple downstream
mechanisms of inflammation that are well known in the
periphery (e.g. cytokine stimulation). Similar down-
stream mechanisms are likely to occur in the AD brain.
This is supported by in vitro culture experiments in-
dicating the production of prostaglandins in response
to cytokines [34,284,313], as well as the altered ex-
pression of cytokines and other inflammation-related
molecules in response to PGE2 [41,112,177,215] in as-
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trocytes and microglia. Other possible roles for COX-
2 in AD inflammation involve mechanisms related to
glutamate excitotoxicity [192], free radicals [321], and
PPARγ expression [179,217,218,307,338].

3.4. Blood coagulation and fibrinolysis systems

Originally discovered as mechanisms that regulate
the flow and coagulation of blood in the vasculature
and at sites of vascular injury, the blood coagulation
and fibrinolysis systems have more recently been rec-
ognized as playing important roles in inflammatory and
tissue repair processes in extravascular tissues. Sev-
eral molecules of the coagulation cascade, as well as
numerous proteases, have been detected in Aβ plaques
or are upregulated in the AD brain (Table 1). Interest-
ingly, the actions of several of these mediators are en-
hanced by heparin binding [356,375]. For this reason,
the conspicuous presence of heparin sulfate proteogly-
cans in Aβ plaques and neurofibrillary tangles in AD
brains [376], lends credibility to the active involvement
of these proteins in AD neuroinflammation.

3.5. Adhesion molecules

As part of the inflammatory response, altered expres-
sion of several intercellular adhesion molecules occurs
on astrocytes and microglia (Table 1). Such molecules
are especially abundant on Aβ plaque-associated as-
trocytes and microglia. Expression of many of these
adhesion molecules is readily induced by upregulated
cytokines (reviewed in [27,36,75,299,341]). Integrins
are among the better studied adhesion molecules in AD.
In particular, theβ2 integrins complement receptor 3,
complement receptor 4, and LFA-1, a ligand for ICAM-
1 on astrocytes [13], are significantly upregulated on
AD microglia [347]. Accordingly, these molecules rep-
resent another mechanism for glial cell recruitment to
inflammatory sites of Aβ deposition.

3.6. Other inflammatory and acute phase proteins

The acute phase proteins are a diverse set of
molecules that arise early in inflammation as the acute
phase response. Like many other inflammatory medi-
ators, a wide range of acute phase reactants have been
found in association with senile plaques and extracel-
lular neurofibrillary tangles (Table 1).

A few of the acute phase proteins have notable in-
teractions with Aβ. α1-antichymotrypsin (α1-ACT)
is consistently colocalized with Aβ deposits in the

AD brain, and has been suggested to play a role in
plaque formation by enhancing conversion of nonfib-
rillar forms of the Aβ to Aβ fibrils [103,118,188,
246]. Another acute phase protein,α2-macroglobulin
(α2-MAC), is a potent broad spectrum protease in-
hibitor possessing a bait region that acts as a sub-
strate for a wide variety of proteases [47,378]. For-
mation of a protease/α2-MAC complex exposes a
receptor-binding domain. The complex is removed
by endocytosis following binding of this domain to
theα2-MAC receptor/low density lipoprotein receptor-
related protein (α2-MACR/LRP). In addition to pro-
tease inhibition and protease removal,α2-MAC and
α2-MAC/LRP function as a clearance system for in-
flammatory proteins [47,89,165,204,442].α2-MAC
andα2-MAC/LRP have been found in neuritic plaque
amyloid and neurofibrillary tangles [33,336,384,408,
447]. Aβ also apparently forms a complex withα2-
MAC that is removed throughα2-MAC/LRP endocytic
clearance mechanisms [305].α2-MAC may inhibit
Aβ aggregation and fibril formation [87], promoting
Aβ removal and further implicatingα2-MAC andα2-
MAC/LRP in several AD pathophysiologic processes.
Interestingly, polymorphisms inα1-ACT [188], α2-
MAC [40], and α2-MAC/LRP [189,222,332] recep-
tor [189] genes have been reported to be possible risk
factors for AD.

Apolipoprotein E (ApoE), particularly, the ApoE4
allele, has been widely documented to play a role in AD.
Long-known to be upregulated at sites of inflammation
and to play a role in peripheral amyloidosis [197],ApoE
first came to light in AD as a susceptibility gene [387].
ApoE4 appears to shorten the onset of AD by some
5–10 years [387] and patients with one and, especially,
two ApoE4 alleles tend to have more congophilic amy-
loid angiopathy [242]. In addition, ApoE can influ-
ence microglial expressionof several inflammatory fac-
tors [209,210], and this effect appears to be isoform
dependent [30,233].

Finally, soluble amyloidβ precursor protein (sAβPP)
bears a number of properties in common with acute
phase proteins. It is elevated at sites of tissue dam-
age [29]; its synthesis and release are partly medi-
ated by pro-inflammatory cytokines and stimuli [54,
135]; and it induces NF-κB, stimulating the expres-
sion of several inflammatory mediators [30]. The pro-
inflammatory activity of sAβPP is inhibited by bind-
ing to ApoE, with ApoE3 being more effective than
ApoE4. In contrast, it should be noted that sAβPP has
also been demonstrated to have neurotrophic actions in
many systems [24,262,266,291,292,373,463].
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3.7. Free radicals

There has been intense interest in the role of oxy-
gen free radicals as a contributing factor to AD pathol-
ogy [35,230,256,257]. Many hallmark modifications
of oxidative damage have been demonstrated in the AD
brain, including proteins modified with advanced gly-
cation end products (AGEs) [396],malondialdehyde,8-
hydroxy-deoxyguanosine,4-hydroxynonenal[23,257],
nitrotyrosine [140,374,391], nitrotyrosine-modified
proteins [140,152,374,391], and increased amounts
of lipid peroxidation [257]. Free radical-mediated
stress not only leads to direct cellular injury, but
may also influence neuronal integrity by triggering
redox-sensitive, NF-κB-mediated transcription of var-
ious pro-inflammatory and/or apoptosis-related genes
in surrounding cells [187].

Although the majority of research on AD oxida-
tive stress has focused on neuronal generation of free
radicals [35,264,267], the concept of free radical tox-
icity actually has its roots in inflammation biology,
where the secretion of reactive oxygen and nitrogen
species by inflammatory cells is a major mechanism
for attacking opsonized targets. Activated microglia
have the potential to produce large amounts of reactive
oxygen species via nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase complex, a complex ac-
tivated by Aβ peptide. Through such mechanisms,
microglia serve as an alternative source of free radi-
cals [83,200,201,271,416,417]. Recent data have also
indicated that some plaque-associated microglia may
be a source of the enzyme myeloperoxidase (MPO) in
AD brains [337]. MPO catalyzes a reaction culminat-
ing in the production of hypochlorous acid, which can
further react to generate several other reactive oxygen
species.

4. Conclusion

The best evidence for the pathophysiologic relevance
of AD inflammation is the sheer number of inflamma-
tory mediators that have been found to be upregulated
in the AD brain (Table 1). The presence of these medi-
ators defines a localized, innate inflammatory response
with roots that are as obvious as those in a peripheral
wound: damaged tissue and highly insoluble deposits
of abnormal materials. That this localized, innate in-
flammatory response causes secondary damage to the
affected tissue is inarguable if a century of peripheral
inflammation biology has any meaning. The salient

questions are how much secondary damage occurs due
to AD inflammation, and how likely is it that the in-
flammatory mechanisms invoked, feed back to stim-
ulate AD etiologic processes such as Aβ deposition.
Given the recent interest in AD inflammation research,
the answers to these questions should not take long to
obtain.
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Table 1
Inflammatory markers in AD

Marker ∆ in AD Pathology Cell Method

Complement Proteins
Classical Pathway
C1r ↑ Plaques [402], neurons [402], homogenates [470] N IHC,WB

mRNAs [470] PCR
C1s ↑ Plaques [402], neurons [402], homogenates [470] N IHC,WB

mRNAs [421,470] PCR
C1q ↑ 3.6X in superior frontal gyrus [49] WB

↑ Plaques [4,95,97,98,115,170,272,273,339,402], N IHC,EM
NFTs [272,273,342], neurons [4,402], dystrophic WB
neurites [272,273], homogenates [402,470]

↑ mRNAs [95,182,363,470] M,N ISH
↑ mRNAs [421] PCR
↑ mRNAs – 3.5X in frontal cortex [114,430] N NB

C2 ↑ Plaques [402], neurons [402], homogenates [402,470] N IHC,WB
↑ mRNAs [363,470] N ISH,PCR
↑ Plaques [96,98,99,170,171,272,273,402,422] IHC,EM

C3 ↔ mRNAs [115] NB
↑ mRNAs [114,363,430,470] N PCR,ISH
↑ Homogenates [402,470] WB
↑ Plaques [98] IHC

C3a ↑ Plaques [97,274] IHC
C3b ↑ Plaques [95,97,98,273,274] IHC
C3c ↑ Plaques [95,98,273] IHC
C3d ↑ NFTs, dystrophic neurites [53,57,97,170,272,273] IHC

↑ Homogenates [470] WB
↑ Oligodendroglial fibers [456] O IHC
↑ Plaques [97,98,136,170,171,272,402] IHC,EM

C4 ↑ mRNAs [86,182,363] N ISH
↑ mRNAs [430,470] PCR
↑ NFTs [272], neurons [402] N IHC
↑ Homogenates [402,470] WB
↑ Plaques [273] IHC

C4d ↑ Homogenates [470] WB
↑ NFTs [273,357], dystrophic neurites [272,273,342] IHC
↑ Degenerating myelin sheaths [456] O IHC,EM

Terminal Pathway
C5 ↑ mRNAs [363,470] N ISH,PCR

↑ Plaques [402], neurons [402] N IHC
↑ Homogenates [402,470] WB

C6 ↑ Plaques [274,402], neurons [402] N IHC
↑ mRNAs [363,470] N ISH,PCR
↑ Homogenates [402,470] WB

C7 ↑ Plaques [402], neurons [402], NFTs [174] N IHC,EM
↑ mRNAs [363,470] N ISH,PCR
↑ Homogenates [402,470] WB

C8 ↑ Plaques [402], neurons [402] N IHC
↑ mRNAs [363,470] N ISH,PCR
↑ Homogenates [402,470] WB

C9 ↑ Plaques [402,435], neurons [402] N IHC
↑ Homogenates [402,435,470] WB
↑ mRNAs [276,363,435,470] N ISH,PCR
↑ NFTs, dystrophic neurites [435] IHC

C5b-9 (MAC) ↑ Myelinated and unmyelinated neurons N EM
(endocytic vesicles) [202]

↑ Plaques [272,273,435] IHC
↑ NFTs, dystrophic neurites [272,273,435] IHC
↑ Homogenates [435,470] WB

Alternative Pathway
Factor B, Ba, Bb ↑ Plaques, Frontal Cortex [388] N IHC,WB
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Table 1, continued

Marker ∆ in AD Pathology Cell Method

Factor B, Ba, Bb ↑ Serum AD vs. ND [133] ELISA
Properdin ↑ Serum AD vs. ND [133] ELISA

Complement Defense Proteins
Factor H, FHL-1 ↑ Plaques, Frontal Cortex [162,388] N,M,A IHC,WB
Factor I ↑ Plaques, Frontal Cortex [388] N IHC,WB
CD59 (Protectin, MIRL) ↑ Plaques [276,282] IHC

↑ Tangled neurons, dystrophic neurites [282] N IHC
↑ RNA extracts from brain [282] N PCR
↑ Slightly increased in AD vs. ND brains [468] PCR,WB
↑ Deficiency in AD brain vs. ND [467] IHC,WB

Clusterin (APOJ, SP40,40) ↑ Plaques [64,131,150,194,276], pyramidal N,A IHC
↑ neurons [131,226,276], dystrophic neurites [276],
↑ neuropil threads [131,276], NFTs [131,276],
↑ CAA [423], astrocytes [226]
↑ CSF [64], ELISA
↑ homogenates [226] WB
↑ mRNAs [131,268] N ISH

Vitronectin (S-protein) ↑ Plaques [12,99,276,280], NFTs [12,276] M IHC
↑ Dystrophic neurites, neuropil threads [276] IHC

C4-binding protein (C4BP) ↑ Plaques, CSF, cerebral cortex and IHC,WB
microvessels [185,410,477]

C1-Inhibitor (C1-INH) ↑ Plaques, dystrophic neurites, neuropil threads, N,M,A IHC,WB
pyramidal neurons, astrocytes [419,421,431,468] PCR

Complement Receptors
Complement receptor 3 (CR3) ↑ Activated microglia [15,96,99] M IHC
Complement receptor 4 (CR4) ↑ Activated microglia [15] M IHC
C3a receptor ↑ [80,306] N,M,A IHC,ISH
C5a receptor ↑ [126,306] N,M,A IHC,ISH
Vitronectin receptor ↑ Activated microglia in classical plaques [12,96,99] M IHC

Cytokines
Interleukin-1α (IL-1α) ↑ Plaque associated microglia [141,364,366] M IHC
Interleukin-1β (IL-1β) ↑ Homogenates from frontal cortex, parietal ELISA

cortex, temporal cortex, hypothalamus,
thalamus and hippocampus [55,96]

↑ NFTs associated microglia [367] M IHC
↑ Activated microglia and astrocytes in AD [143] M,A IHC
↑ Plasma [225], CSF [42] ELISA

ICE (Caspase-1) ↑ Hippocampus and parahippocampus [478] WB,BA
S100β ↑ Reactive astrocytes around A IHC,NB

plaques [25,259,290,365,368,413], around NFT [367]
↑ Activated microglia and astrocytes in AD [143] M,A IHC
↑ Hippocampus and temporal cortex [365] WB

Interleukin-2 (IL-2) ↑ AD cortex [240,341], Hippocampus [25] M IHC,RIA
Interleukin-6 (IL-6) ↑ Plaques [33,164,166,167,384] IHC

↑ mRNA [428,476] M PCR
↑ Temporal cortex AD vs. ND [449] ELISA
↑ Neurons [384] N IHC
↑ Plasma [186,225,225,372], CSF [42] ELISA
↓ CSF [455] ELISA

Tumor Necrosis Factor (TNF-α) ↑ Serum AD vs. ND [113,397] ELISA
↓ Serum AD vs. ND [56] ELISA
↑ CSF AD vs. ND [397,398] ELISA

IFN-α ↑ Subset of neurons [190,457] N ISH,IHC
↑ White matter and activated microglia [9,190,457] M IHC,ISH

M-CSF ↑ Microglia [16] and neurons [466] around plaques M,N IHC
↑ CSF (5X) [466] ELISA

Pleiotrophin (PTN or HB-GAM) ↑ Plaques with dystrophic neurites [446] IHC
TGF-β ↑ Serum [59,60], CSF [60] ELISA
TGF-β1 ↑ Plaques [324,412] IHC
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Table 1, continued

Maker ∆ in AD Pathology Cell Method

TGF-β1 ↑ NFT [324,412] IHC
TGF-β2 ↑ NFT [116] IHC

↑ Neurites, astrocytes, microglia [324] A,M IHC
↑ Cortex (3.2X) [116] ELISA

TGF-β3 ↑ Hirano bodies [324] IHC
Midkine ↑ Plaques and homogenates [472] IHC,WB
FGF-a (acidic) ↑↓ Entorhinal cortex neurons [406] N IHC

↑ Plaque associated astrocytes [196] A IHC
FGF-b (basic) ↑ Plaques [78,137], NFTs [383], neurons and N,A IHC,WB

↑ astrocytes [78,383], mRNAs [383] ISH
FGF-9 ↑ Dystrophic neurites, neurons, astrocytes [302] N,A IHC
IGF (Isulin-like growth factor) ↑ Subpopulation of astrocytes [69] A IHC

↑ Serum and CSF [404] ELISA
HGF (Hepatocyte growth factor) ↑ Astrocyte, microglia, some neurons [107] A,M,N IHC,EIA
VEGF ↑ Astrocytes, vessels, perivascular deposits [183] A IHC
PDGF-AA and BB ↑ Neurons (AA,BB), vessels (AA), NFTs (BB) [260] N IHC,WB
NGF (nerve growth factor) ↑ Hippocampus [156,359] ELISA

↑ Frontal cortex [77,151,156,359] ELISA
↑ Temporal cortex [151,359] ELISA
↑ Dentate Gyrus [304] EIA
↑ Parietal Cortex [105,359] ELISA
↑ Superior frontal gyrus [359] ELISA
↑ Occipital cortex [77,359] ELISA
↑ Amygdala [359] ELISA
↑ Putamen [359] ELISA

Decreased in these structures due ↓ Nucleus Basalis of Meynert [359] ELISA
to failure of retrograde transport ↓ Nucleus Basalis of Meynert [154] N ISH,NB
of NGF in cholinergic neurons. ↓ Cholinergic Basal Forebrain neurons [293] N IHC

↑ CSF [157] ELISA
BDNF – (Brain derived neurotrophic ↓ Hippocampus and parietal cortex [156] ELISA
factor) ↓ Entorhinal cortex [304] EIA

↓ mRNA parietal lobe [160], hippocampus [327,328] N PCR,ISH
↓ Hippocampus and neocortex neurons [71,108,377] N IHC
↑ Plaques [300] IHC
↑ Dystrophic neurites [108] IHC

Trk -A (NGF receptor) ↓ mRNAs 2X in parietal cortex [158] N PCR
↓ Nucleus Basalis cholinergic neur. [45,46,294,350] N IHC
↓ Nucleus Basalis and frontal cortex [294] N BA
↓ mRNAs in cholinergic neurons of Nucleus Basalis, N ISH,PCR

ventral striatum, and putamen [43,295]
↑ mRNAs in hippocampus [70] ISH
↑ Plaques associated hippocampal astrocytes [70] A IHC
↑ Plaques in hippocampus and temporal cortex [70]

Trk -B (catalytic p145) ↓ Temporal and frontal cortex [20] WB
(BDNF receptor) NC Neuronal perikarya of hippocampus and cortex [377] N IHC

↓ Frontal cortex [108] WB
↓ Frontal cortex neurons [108] N IHC
↑ Glial cells (especially around plaques) [70,108] M,A IHC
↓ Nucleus Basalis cholinergic neurons [350] N
↑ Plaques in hippocampus and temporal cortex [70] IHC

Trk -C (NGF receptor) ↓ Nucleus Basalis cholinergic neurons [350] N IHC

Cytokine Receptors
sIL-1R II ↑ CSF [122] ELISA
IL-1RA ↑ Temporal cortex homogeneates [449] ELISA

↑ Plaques, neurons, some microglia and NFTs [471] M,N IHC
CSFR-1 (Receptor for M-CSF) ↑ Plaque associated and reactive microglia [16] M IHC
IL-6R ↑ CSF AD vs. ND [147] ELISA
sIL-6R ↑ CSF AD vs. ND [147,148] ELISA
gp130 ↑ CSF AD vs. ND [148] ELISA
TβR I (type I ser/thr kinase rec.) ↑ Microglia and neurons [229] M,N IHC
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Table 1, continued

Marker ∆ in AD Pathology Cell Method

TβR II (type II ser/thr kinase rec.) ↑ Microglia and neurons [229] M,N IHC
FAS (CD95) ↑ Frontal and temporal lobe homogenates [82] WB

↑ Neurons and dystrophic neurites [82,308] N IHC
↑ Plaques and associated astrocytes [308] A IHC

EGFR ↑ Neuritic plaques [38], endothelial cells [390] E IHC,EM
FGFR-1 ↑ Plaque associated astrocytes, neurons, mRNAs [395] A,N IHC,ISH
FGFR-3 ↑ Plaque associated astrocytes [109] A IHC

Chemokines and Receptors
Chemokines In AD : Reviewed in [453]
IP-10 ↑ Astrocytes (especially around plaques) [452] A IHC
MIP-1α (CCβ) ↑ Neurons, microglia (weakly) [454] N,M IHC
MIP-1β (CCβ) ↑ Astrocytes (especially around plaques) [452,454] A IHC
MCP-1 (CCβ) ↑ Plaques, microglia [172] M IHC

Chemokine Receptors In AD : Reviewed in [453]
CXCR3 (IP-10 receptor) ↑ Neurons [452] N IHC
CXCR2 (IL-8RB) ↑ Plaques [163,451] IHC

↑ Neurons and dystrophic neurites [451] N IHC
CCR3 ↑ Microglia (especially in plaques) [454] M IHC

↑ Microglia (especially in plaques) [454] M IHC

Cell Surface Markers
MHC I ↑ Endothelial cells [273,409], microglia [281,409] E,M IHC
MHCII
HLA-DR ↑ Activated microglia (concentrated in plaques) M IHC

[15,96,121,173,240,263,?,281,341,409]
↑ [389] M IHC,EM

HLA-DP ↑ [240] M IHC
HLA-DQ ↑ [240] M IHC
LCA ↑ Activated microglia [15] M IHC

Cyclooxygenase (COX) and
Eicosanoids
Cyclooxygenase COX in AD: Reviewed in [311]
PLA2 (Phospholipase A2) ↓ Cerebral cortex (multiple areas) [127,128,345] BA
cPLA2 (cytosolic PLA2) ↑ Cerebral cortex protoplasmic astrocytes [382] A IHC
COX-1 ↑ Cortical homogenates [198,469] WB

↑ Hippocampus and neocortex neurons [469,474] N IHC,ISH
↑ Microglia (especially in plaques) [474] M IHC
↑ mRNAs [244,469] PCR,NB

COX-2 ↑ Frontal [322], hippocampal [155], and temporal IHC,WB
↑ cortex [198], neurons [314,469] and NFTs [314] N IHC,WB
↑ mRNAs [244,245,469] PCR,NB

PGHS-2 (COX-2) ↓ mRNAs [58,312] NB
Eicosanoids
Prostaglandin D2 (PGD2) ↓ Cortex AD vs. ND [175,448] BA
Prostaglandin E2 (PGE2) ↓ Frontal cortex AD vs. ND [448] BA

↑ 5X in CSF [287] GC/MS
Prostaglandin F1( (PGF1() ↓ 4X in CSF [287] GC/MS
Prostaglandin F2( (PGF2() ↓ Frontal cortex AD vs. ND [448] BA
Isoprostanes ↑ CSF [286,287,333], cortex [310,333] GC/MS
Thromboxane B2 (TXB2) ↓ Cortex AD vs. ND [175,448] BA

Coagulation and Fibrinolysis
Systems
Prothrombin ↑ In areas of vascular damage [37] IHC
Thrombin ↑ Plaques, Tangles [7,8,11,277] IHC
Antithrombin III ↑ Plaques, tangles, paired helical filaments, IHC,WB

dystrophic neurites, some astrocytes, mRNAs [184] A EM,PCR
Tissue factor (thromboplastin) ↑ Plaques [269] IHC
Tissue factor pathway inhibitor-1 ↑ Plaques and microglia [159] M IHC,WB
Hageman factor ↑ Plaques, mRNAs [473] PCR,WB
TPA ↑ Plaques [335] IHC
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Table 1, continued

Marker ∆ in AD Pathology Cell Method

UPA ↑ Plaques [335], Serum activity and conc. [21] IHC,BA
PAI I ↑ Plaques [335], CSF [393] IHC,BA
PAI II ↑ Activated microglia [10] M IHC
Protease nexin-1 (PN-1) ↓ Activity decreased≈ (85% , AD homogenates [425] BA,WB

↓ Immunoreactivity and number of blood vessels [418] IHC
↓ Cortical homogenates and immunoreactivity [65] IHC,WB
↑ Plaques, NFTs [344,425] IHC

Protease nexin-1/ ↑ AD homogenates [425] (increased complexes but WB
thrombin complex decreased free PN-1)
Protease Nexin-2 (PN-2 or AβPP) ↓ Cortical homogenates and immunoreactivity [65] IHC,WB
XIIIa ↑ Expressed in AD microglia [14] M IHC

Adhesion Molecules
ICAM-1 ↑ Plaques [99,121,347,424] IHC

↑ Cerebrovascular endothelial cells [121] E IHC
↑ Plaques and associated astrocytes [13] A IHC

ICAM-2 ↑ Activated microglia [424] M IHC
NCAM ↔ Astrocytes, Cortical homogenates [132] A IHC,WB

↓ Frontal cortex neurons [475] N IHC
PSA-NCAM ↑ Hippocampal formation IHC
LFA-1 (CD11a) ↑ Activated microglia [11,15,121,347] M IHC
VLA (very late antigen)
α3 ↑ Plaque corona [99] IHC
α6 ↑ Plaque corona [99] IHC
β1 ↑ Plaque corona [99] IHC
LeuCAM (β2 integrin) ↑ Activated microglia [99] M IHC
CD44 ↑ Astrocytes AD vs. ND [17] A IHC

Acute Phase In AD : Reviewed in [211]
And Other Proteins
α1-Antichymotrypsin (α1-ACT) ↑ Plaques [1,2,136,346,349,477], tangles [136] IHC

↑ Astrocytes [2,136] , some neurons [2] A,N IHC
↑ Serum [?], CSF [224] ELISA
↑ Serum [227] RIA

α2-Macroglobulin (α2-MAC) ↑ Plaques [33,335,384,414], microglia bordering N,M IHC
plaques [414], hippocampal neurons [33,384]

↑ 2X in AD vs. ND [449] ELISA
ApoE (Apolipoprotein E) ↑ Plaques [150,194,335,477]
LRP (ApoE andα2-MAC ↑ Plaques [335,408], NFTs [408], neurons [335,408,447], N,M,A IHC
receptor) astrocytes [408,447], microglia [408] IHC
α1-antitrypsin ↑ Plaques, tangles, astrocytes [136] A IHC

↑ Serum [133,440] ELISA
Serum amyloid A ↑ Homogenates [221], mRNAs [221], serum [102] WB,PCR
Serum amyloid P (pentraxin) ↑ Plaques, CAA [18,73,92,185], NFTs [18,92,357] IHC
C-reactive protein (pentraxin) ↑ 3X in AD vs. ND [449] ELISA

↑ Plaques [176,384], NFTs [91] IHC
Ceruloplasmin ↑ CSF [231] ELISA

↑ Homogenates, plaques, neurons, astrocytes [232] N,A EIA,IHC
↓ Temporal cortex [72] WB

ApoA-I ↑ Plaques [150] IHC
ApoA-IV ↑ Plaques [150] IHC
ApoD ↑ Plaques [150] IHC
Receptor Associated Protein ↑ Neuronal soma (inhibitor of LRP) [335] N IHC
Lipoprotein Lipase ↑ Plaques [335] IHC
Lactoferrin / Lactotransferrin ↑ Plaques [335] IHC

↑ Plaques, neurons, NFTs, glia [176,176,191,219] N,M,A IHC

Free Radicals and By-Products In AD: Reviewed in [35,256,257] IHC
AGEs ↑ Colocalized with astrocytes and microglia [396] A,M
Malondialdehyde ↑ [257]
8-Hydoxy-deoxyguanosine ↑ mtDNA of parietal cortex [283], CSF [237] IHC
4-hydroxynonenal ↑ Plaques [23], ventricular fluid [236]

↑ Multiple brain regions [258]
Glutathione S transferase ↓ Multiple brain regions and CSF [238] IHC


