Supplementary Data

High Blood Caffeine Levels in MCI Linked to Lack of Progression to Dementia

Chuanhai Cao, David A. Loewenstein, Xiaoyang Lin, Chi Zhang, Li Wang, Ranjan Dua, Yougui Wu, Alessandra Giannini, Ge Bai, Jianfeng Cai, Maria Greig, Elizabeth Schofield, Raj Ashok, Brent Small, Huntington Potter, and Gary W. Arendash

1 Department of Pharmaceutical Science, University of South Florida College of Pharmacy, Tampa, FL, USA
2 Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
3 Department of Pharmacology, University of South Florida College of Medicine, Tampa, FL, USA
4 Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
5 Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
6 Department of Medicine and Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
7 Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
8 Department of Chemistry, College of Arts and Science, University of South Florida, Tampa, FL, USA
9 Department of Psychology, University of South Florida, Tampa, FL, USA
10 Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA

Accepted 21 February 2012

AD TRANSGENIC MOUSE STUDY METHODS

At 6–8 months of age, AβPPsw+PS1 transgenic mice were injected intraperitoneally with 200 μl of one of the following: caffeinated coffee, decaffeinated coffee, caffeine, or saline solution (6-7 mice per group).

A post-treatment blood sample (0.2 cc) was taken 3 h thereafter, with plasma separated and stored at −80°C for later analysis of cytokine levels. Commercial drip ground coffee (Maxwell House, Kraft Foods, etc.) was utilized to make both caffeinated and decaffeinated (filtered) coffee. For both caffeinated and decaffeinated coffee, there was a synergistic increase in plasma GCSF compared to saline.

ISSN 1387-2677/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved
coffee, concentration was done prior to storage at ~20°C. On the day of treatment, concentrated coffee and decaffeinated coffee aliquots were reconstituted, keeping all non-caffeinergic components of coffee at the same concentration for both of these treatments. For the treatment solutions containing caffeine, the amount of caffeine administered for the acute i.p. treatment was: caffeinated coffee (1.5 mg), decaffeinated coffee (0.06 mg), and caffeine solution (1.5 mg). Prior to administration, the pH of each solution was measured and adjusted to pH 5.3 (the pH of coffee). The amount of caffeine administered for the caffeine and decaffeinated coffee treatment (1.5 mg) was equivalent to a human intake of 500 mg caffeine (e.g., five 8-oz cups of drip coffee).

For determination of each cytokine response to the various coffee/caffeine treatments, the mean plasma cytokine value for each of these three treatment groups was divided by the mean plasma cytokine value for the saline (control) treatment group. Thus a percent difference was attained for each of the coffee/caffeine treatments versus saline control. To compare these percent differences in AD mouse to those from MCI patients, the mean plasma cytokine levels for the MCI→MCI (stable) group were divided by the respective mean plasma cytokine levels for the MCI→AD (conversion) group, serving as a control. Though not directly comparable, the resulting percent differences in plasma cytokine levels for “high caffeine intake” MCI patients and those for AD mice given various acute caffeine/coffee treatments are meaningful in that they are both in reference to appropriate controls.