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MODELS DESCRIPTION

Our notation is as follows, whereas
Y = (Biomarker Measures) is the dependent
variable; X = (ADAS − Cog) the independent vari-
able; the sample size; and εi, i = 1, ..., n white noise
with mean 0 and constant variance.

Linear model

Yi = bo + b1xi + εi, i = 1, ..., n; (1)

Quadratic model

Yi = β0 + β1xi + β2x
2
i + εi, i = 1, ..., n; (2)

1Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.ucla.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.ucla.edu/wp-content/uploads/how to
apply/ADNI Acknowledgement List.pdf

∗Correspondence to: Simon Duchesne, Institut Universitaire en
Santé Mentale de Québec, 2601 de la Canadiére, Room F-4435,
G1J 2G3, Québec, Canada. Tel.: (418) 663 5741; ext. 4777; Fax:
(418) 663 5971; E-mail: simon.duchesne@crulrg.ulaval.ca.

Penalized B-Spline model

Yi = β0 + β1xi + β2x
2
i

+
k∑

j=1

βj+2(xi − xj)2
+ + εi, i = 1, ..., n; (3)

where

(x − xj)2
+ =

⎧⎨
⎩

(x − xj)2, if x � xj;

0, if not;
(4)

and x1 ≤ x2 ≤ ... ≤ xk are the abscissas of joint points
called knots. The number of knots k is chosen by the
user or automatically by the SAS/TRANSREG proce-
dure. Equation (3) is equivalent to a quadratic model
in each interval

(
xj,xj+1

]
[1].

Local regression

Yi = g(xi) + εi, (5)

where g(.) is an unknown locally linear or quadratic
function near a chosen reference point x = x0. Each
neighborhood is chosen so that it contains a specified
percentage of data points, and the parameters of g(.) are
estimated in this restricted dataset [2]. The number of
reference points is chosen by the user or automatically
by the SAS/LOESS procedure, dependent on sample
size.
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Robust quadratic regression

This model is equivalent to the quadratic model
above (eq. 2), but using Huber’s M-estimation method
instead of least square [3]. The resulting model did
not remove outliers nor did it assume error normal-
ity. Huber’s M-estimation used the following weight
function

WH (e) =
⎧⎨
⎩

1 for |e| ≤ k;

k/|e| for |e| � k.
(6)

instead of WLS(e) = 1 as in the least square estimation.
The tuning constant k depended on the data and number
of outliers to be conserved; and

Sigmoid model

Yi = asym/(1 + exp((xmid − xi)/scal)) + εi. (7)

where asym is the asymptote, xmid the inflection point
and scal the slope at point of inflection.

AKAIKE INFORMATION CRITERION

The Akaike Information Criterion (AIC) [4] is based
on the log-likelihood, defined as follows:

AIC = n. ln(SSq/n) + 2.p. (8)

where SSq is the sum of square of the fitted errors,
the number of data points and the number of parameters
fitted by each model.

To select the best model, we followed this algorithm:

1. Calculate the AIC for all models;
2. Identify the best model with the smallest AIC =

AICmin.
We could have stopped at this point, and

the model thus selected is the model more
likely to be correct. But how much more likely?

Considering there was not much evidence to
choose one model over the other, especially if
AIC scores were close, we proceeded as follows:

3. Calculate the difference in AIC, �i(AIC) =
AICi − AICmin for each model i;

4. Compute the relative likelihood,

exp
(
−1

2 · ∆i(AIC)
)

, for each model i;

5. Compute the Akaike weights for each model i, as
such:

wi (AIC ) =
exp

(
−1

2 · ∆i(AIC)
)

m∑
i=1

exp
(
−1

2 · ∆i(AIC)
) , (9)

where is the number of models. This quantity can
be interpreted as the probability that the given
model i,i = 1,. . ., 6, is the best model, given the
data and the set of candidate models [5]; and

6. Compute the evidence ratio from the Akaike
weights:

evidence ratio = wi(AIC)

wj(AIC)
(10)

and thus get a likelihood ratio for how much sup-
port model i has over model j [6].
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