Supplementary Data

Anatomical MRI and DTI in the Diagnosis of Alzheimer’s Disease: A European Multicenter Study

Stefan J. Teipel,a,b,*, Martin Wegrzyn,b, Thomas Meindlc, Giovanni Frisonid, Arun L.W. Bokde,e,f, Andreas Fellgiebelg, Massimo Filippih, Harald Hampef, Stefan Klöppelf, Karlheinz Hauensteink, Michael Ewersl,m and the EDSD study group

aDepartment of Psychiatry, University of Rostock, Rostock, Germany
bDZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
cInstitute for Clinical Radiology, Department of MRI, Ludwig Maximilian University Munich, Munich, Germany
dLENITEM Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS Centro San Giovanni di Dio, FBF, Brescia, Italy
eCognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
fTrinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
gDepartment of Psychiatry, University Medical Center of Mainz, Mainz, Germany
hNeuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
iDepartment of Psychiatry and Psychotherapy, Freiburg Brain Imaging, University Clinic Freiburg, Freiburg, Germany
jDepartment of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
kDepartment of Radiology, University Medical Center of Mainz, Mainz, Germany
lDepartment of Radiology, University of California, San Francisco, USA
mVA Medical Center, San Francisco, USA

Accepted 28 March 2012

*Correspondence to: Stefan J. Teipel, M.D., Department of Psychiatry and Psychotherapy, University Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany. Tel.: +01149 381 494 9470; Fax. : +01149 381 494 9682; E-mail: stefan.teipel@med.uni-rostock.de.

ISSN 1387-2477/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved
Supplementary Figure 1. FA reductions in AD compared to controls with different smoothing kernels (4 mm, 8 mm, and 12 mm). The effects of the pooled analysis with center covariate are projected on the axial sections of a T1-weighted template brain in MNI space (IXI template). Sections go from dorsal at Talairach-Tournoux coordinate z = 30 to ventral at z = –25, sections are 5 mm apart. Right of image is right of brain (view from superior). Yellow: overlap of all three smoothing kernels; Red: 8 mm smoothing kernel only; Blue: 4 mm kernel only; Green: 12 mm smoothing kernel only; Pink: overlap of 8 mm and 4 mm kernel.
Supplementary Figure 2. MD increases in AD compared to controls with different smoothing kernels (4 mm, 8 mm, and 12 mm). The effects of the pooled analysis with center covariate are projected on the axial sections of a T1-weighted template brain in MNI space (IXI template). Sections go from dorsal at Talairach-Tournoux coordinate z = 30 to ventral at z = −25, sections are 5 mm apart. Right of image is right of brain (view from superior). White: overlap of all three smoothing kernels; Red: 8 mm smoothing kernel only; Blue: 4 mm kernel only; Green: 12 mm smoothing kernel only; Pink: overlap of 8 mm and 4 mm kernel; Yellow: overlap of 8 mm and 12 mm kernel.
Supplementary Figure 3. FA reductions in AD compared to controls: overlap of effects in at least 4 centers. The voxels with overlapping effects for FA in at least four of the nine centers are projected on the sagittal sections of a T1-weighted template brain in MNI space (IXI template). Sections go from left at Talairach-Tournoux coordinate x = -50 to ventral at x = 50, sections are 7.5 mm apart.
Supplementary Figure 4. MD increases in AD compared to controls: overlap of effects in at least 4 centers. The voxels with overlapping effects for MD in at least four of the nine centers are projected on the sagittal sections of a T1-weighted template brain in MNI space (IXI template). Sections go from left at Talarach-Tournoux coordinate x = -50 to ventral at x = 50, sections are 7.5 mm apart.