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CLASSIFICATION BASED ON
PREDICTIVE AUTOMATED RELEVANCE
DETERMINATION

In this work, we selected predictive variables in a
classification framework, using the collected measure-
ments X = {xn}Nn=1 of the aMCI subjects as input
variables. A group label t = {tn}Nn=1 , t = ±1 was
used to indicate whether a subject converted to AD
within the 2 years follow-up period. At last, we
employed the predicative automated relevance deter-
mination (pred-ARD) method to conduct variable
selection and classification on the training data to
obtain a classifier w.

1Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing
of this report. A complete list of ADNI investigators is available at
http://adni.loni.ucla.edu/research/active-investigators/.
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lis, IN 46285, USA. Tel.: +1 317 277 5528; Fax: +1 317 276 6545;
E-mail: yu peng py@lilly.com.

Pred-ARD is a hierarchical Bayesian approach that
determines the relevance of input variables based on
their prediction performance. It extends the classical
Bayesian variable selection method, automatic rele-
vance determination (ARD). Both ARD and pred-ARD
model the prior distribution of the parameters in the
classifier to explicitly represent the relevance of dif-
ferent input variables. It is usually accomplished by
assigning hyperparameters to determine the range of
variation for the parameters relating to a particular
input variable. In particular, the ARD method mod-
els the width of a zero-mean Gaussian prior on those
parameters:

p(w|α) =
∏

i

N(wi|0, α−1
i ) (1)

where i = 1, . . . p, and p is the number of variables.
In ARD, the hyperparameters are estimated to maxi-
mize the model evidence (marginal likelihood):

p(t|X, α) =
∫

p(t|X,w)p(w|α)dw (2)

where X = {xn}Nn=1 denote data, and
t = {tn}Nn=1 , t = ±1 denoted group labels, As
described before.
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The Pred-ARD method, proposed by Qi et al. [1],
assigns hyperparameters α in the same fashion, but
estimates them to optimize the predictive performance

p(tnew|xnew, t) =
∫

p(tnew|xnew,w)p(w|t)dw (3)

As a result, many elements of � go to infinity,
which naturally prunes irrelevant variables in the data.
Furthermore, this method uses Expectation Propaga-
tion (EP), a more accurate approximation method, for
pred-ARD model estimation, and uses the LOO gener-
alization error obtained directly from EP as estimates
of predictive performance.

Using pred-ARD, we can not only select rele-
vant variables, but also learn the posterior distribution
of classifier p(w|D, α) from the training set D ={

(x1, t1), . . . , (xN, tN )
}

. The posterior distribution
can then be used to estimate the posterior predictive
distribution for a new data point using Equation (3).
In this two-class classification problem, we adopt the
simple decision rule:

tnew = arg max p(tnew|xnew, t) (4)

Using this method, we can estimate the posterior
distribution p(w|D, α) of the classifier, where only
variables relevant to separating converters from non-
converters have nonzero weights. Moreover, we can
rank the importance of these variables to the classifi-
cation by using their corresponding weights. The larger
the magnitude of the weight, the more significant the
variable is for distinguishing the two groups. Finally,
we can use p(w|D, α) to calculate the prediction prob-
ability on testing subject.

DISCUSSION ON CLASSIFICATION
METHODS

The classification method we employed in this paper
is a wrapper method that jointly select features while
building the classification model. This kind of wrapper
method can help to more accurately find only relevant
biomarkers for predicting MCI to AD conversion, com-
pared with a filtering approach. Secondly, the Bayesian

Supplementary Table 1
Summary of numeric biomarker and clinical variables used in this study

Variable Annotation Laboratory Modality

L/R MIDTEMP Left/right middle temporal cortex University of California, San Diego MRI
L/R INFTEMP Left/ right inferior temporal cortex University of California, San Diego MRI
L/R FUSIFORM Left/ right fusiform cortex University of California, San Diego MRI
L/R ENTORHIN Left/ right entorhinal cortex University of California, San Diego MRI
BRAIN Whole brain University of California, San Diego MRI
VENTRICLES Ventricle University of California, San Diego MRI
L/R HIPPOC Left/right hippocampus University of California, San Diego MRI
L/R INFLATVEN Left/right inferior lateral ventricles University of California, San Diego MRI
A�42 Amyloid beta 1-42 University of Pennsylvania CSF
P-Tau181 Phosphorylated Tau University of Pennsylvania CSF
tTau Total Tau University of Pennsylvania CSF
AVEASSOC Average cerebral metabolic rate of glucose

(CMRglc) in frontal parietal and temporal cortices
University of Utah FDG-PET

AVEFRONT Average CMRglc in frontal cortex University of Utah FDG-PET
X2SDSIGPXL Number of pixels with hypometabolic activity two

standard deviations below normal mean
University of Utah FDG-PET

X3SDSIGPXL Number of pixels with hypometabolic activity three
standard deviations below normal mean

University of Utah FDG-PET

ROI-avg The average signal from the right/left angular,
right/left temporal, and bilateral posterior
cingulate

University of California, Berkeley FDG-PET

CV-fROI Cross-validated region Banner Alzheimer’s Institute FDG-PET
ApoE 23 ApoE Genotype 23 UPENN ApoE
ApoE 24 ApoE Genotype 24 UPENN ApoE
ApoE 33 ApoE Genotype 33 UPENN ApoE
ApoE 34 ApoE Genotype 34 UPENN ApoE
ApoE 44 ApoE Genotype 44 UPENN ApoE
TOTALMOD 85 point total including Delayed Word Recall and

Q14
ADAS-Cog

TOTAL11 Classic 70 point total excluding Delayed Word
Recall and Number Cancellation

ADAS-Cog

MMSESCORE Total Score MMSE
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Supplementary Figure 1. Leave one out classification accuracy by individual variables. Only variables with an accuracy >50% are shown in this
figure. The bars are color-coded by modality.

Supplementary Table 2
RID (subject ID) of ADNI aMCI subjects used in this study. Con-

verters and non-converters are listed in separate columns

Converters Non-converters

101 51
204 150
214 291
222 292
231 293
240 314
256 361
258 378
294 424
344 443
511 552
723 566
904 626
906 634
930 673
941 718
978 722
997 746
1010 748
1033 783
1077 925
1130 932
1217 950
1398 973
1423 994

1030
1034
1043
1073
1120
1224
1260
1265
1315
1351
1380
1414
1419

35
MRI+FDG–PET+CSF
MRI+CSF

CSF
No Biomarker

MRI
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Supplementary Figure 2. Histograms of predicted conversion prob-
ability for 63 subjects using different combination of biomarker
modalities in additional to ApoE, ADAS-Cog, and MMSE.

method we used is designed to build models that can be
generalized well to other datasets, especially when the
available training set is relatively small (63 subjects),
and has been shown to provide better prediction per-
formance compared with benchmark methods such as
support vector machines [1]. This Bayesian method
is also computationally efficient with the advanced
approximation method for inference; in the present
study, it took about 16 seconds to build the model with
63 subjects and 22 variables on a standard PC.

Furthermore, as a Bayesian method, it estimates
the probability distribution of the classifier, instead
of making a point estimation. Using these classi-
fiers built with this Bayesian method, we can readily
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estimate the probability of conversion (0–100%) for
any MCI subject using their corresponding biomarker
measurements. Prediction accuracies shown in this
paper were calculated with a probability threshold
of 50%. Using this threshold, test patients with pre-
dicted conversion probability >50% were diagnosed
as MCI to AD converters and patients with predicted
conversion probability ≤50% were diagnosed as non-
converters. When applying these classification models,
we can change the probability threshold to increase
either sensitivity or specificity. The change of clas-
sification threshold will subsequently affect the cost
saving and patient-screening time when using this
method for patient enrollment. For example, if we
change the classification threshold to 85% (proba-
bility >85% are converters and probability ≤85% are
non-converters), we would potentially further enrich
our population with patients more likely to convert
to AD. Accordingly, we would need to recruit fewer
patients and reduce the cost associated with the clin-
ical trial. However, since we are using more rigorous
inclusion criteria (higher threshold), we would need
to screen more patients and increase the cost and
time associated with screening. These scenarios can
be quantitatively simulated with these classification
models to assess the logistical benefit and select the
best threshold to use for patient selection in MCI clin-
ical trials. As demonstrated in the results, the use
of biomarkers (including CSF and imaging modal-
ities) can generate strong predictions with >80% of
subjects assigned to the first and fourth quartiles of
prediction probability p (i.e., p < 25% or p > 75%). In
contrast, screening based on genotype and cognitive

tests alone generates less informative predictions with
borderline conversion probabilities, with 75% of sub-
jects assigned a prediction probability between 25 and
75%.

In theory, for prospective application of our model in
a clinical trial, it may not be necessary to use the same
data acquisition or analysis methods as long as equiv-
alent measurements, expressed in the same physical
units, as those used to build the classification model
are used. In practice, however, care must be taken for
vMRI measures in particular; at the present time dif-
ferent structural MRI segmentation software packages
and methods are likely to generate slightly different
values for nominally the same brain structures. This
is exemplified by the current ongoing effort to har-
monize the manual delineation of the hippocampus
[2]. Similarly, for FDG-PET, a composite SUVR mea-
sure should use consistent mask and reference regions.
Thus, a classifier of the type presented here should
be trained using summary measures generated using
the same analysis method that will be applied in its
prospective application to clinical trial data.
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