Biblio

Export 179 results:
[ Author(Desc)] Title Type Year
Filters: Keyword is Animals  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
D. A. Gimbel, Nygaard, H. B., Coffey, E. E., Gunther, E. C., Laurén, J., Gimbel, Z. A., and Strittmatter, S. M., Memory impairment in transgenic Alzheimer mice requires cellular prion protein., J Neurosci, vol. 30, no. 18, pp. 6367-74, 2010.
M. González-Ramírez, Gavilán, J., Silva-Grecchi, T., Cajas-Madriaga, D., Triviño, S., Becerra, J., Saez-Orellana, F., Pérez, C., and Fuentealba, J., A Natural Benzofuran from the Patagonic Aleurodiscus vitellinus Fungus has Potent Neuroprotective Properties on a Cellular Model of Amyloid-β Peptide Toxicity., J Alzheimers Dis, vol. 61, no. 4, pp. 1463-1475, 2018.
J. Gräff, Rei, D., Guan, J. - S., Wang, W. - Y., Seo, J., Hennig, K. M., Nieland, T. J. F., Fass, D. M., Kao, P. F., Kahn, M., Su, S. C., Samiei, A., Joseph, N., Haggarty, S. J., Delalle, I., and Tsai, L. - H., An epigenetic blockade of cognitive functions in the neurodegenerating brain., Nature, vol. 483, no. 7388, pp. 222-6, 2012.
M. W. Granger, Franko, B., Taylor, M. W., Messier, C., St George-Hyslop, P., and Bennett, S. A. L., A TgCRND8 Mouse Model of Alzheimer's Disease Exhibits Sexual Dimorphisms in Behavioral Indices of Cognitive Reserve., J Alzheimers Dis, vol. 51, no. 3, pp. 757-73, 2016.
N. E. Gray, Zweig, J. A., Kawamoto, C., Quinn, J. F., and Copenhaver, P. F., STX, a Novel Membrane Estrogen Receptor Ligand, Protects Against Amyloid-β Toxicity., J Alzheimers Dis, vol. 51, no. 2, pp. 391-403, 2016.
A. Griciuc, Serrano-Pozo, A., Parrado, A. R., Lesinski, A. N., Asselin, C. N., Mullin, K., Hooli, B., Choi, S. Hoon, Hyman, B. T., and Tanzi, R. E., Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta., Neuron, vol. 78, no. 4, pp. 631-43, 2013.
R. Guerreiro, Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, C., Kauwe, J. S. K., Younkin, S., Hazrati, L., Collinge, J., Pocock, J., Lashley, T., Williams, J., Lambert, J. - C., Amouyel, P., Goate, A., Rademakers, R., Morgan, K., Powell, J., St George-Hyslop, P., Singleton, A., and Hardy, J., TREM2 variants in Alzheimer's disease., N Engl J Med, vol. 368, no. 2, pp. 117-27, 2013.
F. Guillot, Kemppainen, S., Lavasseur, G., Miettinen, P. O., Laroche, S., Tanila, H., and Davis, S., Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease., J Alzheimers Dis, vol. 51, no. 4, pp. 1157-73, 2016.
B. Gurel, Cansev, M., Sevinc, C., Kelestemur, S., Ocalan, B., Cakir, A., Aydin, S., Kahveci, N., Ozansoy, M., Taskapilioglu, O., Ulus, I. Hakki, Başar, M. Karayel, Sahin, B., Tuzuner, M. Bora, and Baykal, A. Tarik, Early Stage Alterations in CA1 Extracellular Region Proteins Indicate Dysregulation of IL6 and Iron Homeostasis in the 5XFAD Alzheimer's Disease Mouse Model., J Alzheimers Dis, vol. 61, no. 4, pp. 1399-1410, 2018.
H
H. Hampel, Toschi, N., Babiloni, C., Baldacci, F., Black, K. L., Bokde, A. L. W., Bun, R. S., Cacciola, F., Cavedo, E., Chiesa, P. A., Colliot, O., Coman, C. - M., Dubois, B., Duggento, A., Durrleman, S., Ferretti, M. - T., George, N., Genthon, R., Habert, M. - O., Herholz, K., Koronyo, Y., Koronyo-Hamaoui, M., Lamari, F., Langevin, T., Lehéricy, S., Lorenceau, J., Neri, C., Nisticò, R., Nyasse-Messene, F., Ritchie, C., Rossi, S., Santarnecchi, E., Sporns, O., Verdooner, S. R., Vergallo, A., Villain, N., Younesi, E., Garaci, F., and Lista, S., Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology., J Alzheimers Dis, vol. 64, no. s1, pp. S47-S105, 2018.
Y. Hasegawa, Toyama, K., Uekawa, K., Ichijo, H., and Kim-Mitsuyama, S., Role of ASK1/p38 Cascade in a Mouse Model of Alzheimer's Disease and Brain Aging., J Alzheimers Dis, vol. 61, no. 1, pp. 259-263, 2018.
G. He, Luo, W., Li, P., Remmers, C., Netzer, W. J., Hendrick, J., Bettayeb, K., Flajolet, M., Gorelick, F., Wennogle, L. P., and Greengard, P., Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease., Nature, vol. 467, no. 7311, pp. 95-8, 2010.
K. Hensley and Kursula, P., Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau., J Alzheimers Dis, vol. 53, no. 1, pp. 1-14, 2016.
X. - P. Hong, Chen, T., Yin, N. - N., Han, Y. - M., Yuan, F., Duan, Y. - J., Shen, F., Zhang, Y. - H., and Bin Chen, Z. -, Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain., J Alzheimers Dis, vol. 51, no. 2, pp. 605-17, 2016.
C. Huang, Ng, O. Tsz- Wa, Ho, Y. - S., Irwin, M. Garnet, Chang, R. Chuen- Chun, and Wong, G. Tin- Chun, Effect of Continuous Propofol Infusion in Rat on Tau Phosphorylation with or without Temperature Control., J Alzheimers Dis, vol. 51, no. 1, pp. 213-26, 2016.
Y. Huang, Shen, W., Su, J., Cheng, B., Li, D., Liu, G., Zhou, W. - X., and Zhang, Y. - X., Modulating the Balance of Synaptic and Extrasynaptic NMDA Receptors Shows Positive Effects against Amyloid-β-Induced Neurotoxicity., J Alzheimers Dis, vol. 57, no. 3, pp. 885-897, 2017.
C. M. Huber, Yee, C., May, T., Dhanala, A., and Mitchell, C. S., Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy., J Alzheimers Dis, vol. 61, no. 1, pp. 265-281, 2018.
I
R. Iban-Arias, Trageser, K. J., Yang, E. - J., Griggs, E., Radu, A., Naughton, S., Rahim, M. Al, Tatsunori, O., Raval, U., Palmieri, J., Huang, Z., Chen, L. - C., and Pasinetti, G. Maria, Exposure to World Trade Center Dust Exacerbates Cognitive Impairment and Evokes a Central and Peripheral Pro-Inflammatory Transcriptional Profile in an Animal Model of Alzheimer's Disease., J Alzheimers Dis, vol. 91, no. 2, pp. 779-794, 2023.
J. J. Iliff, Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., Benveniste, H., G Vates, E., Deane, R., Goldman, S. A., Nagelhus, E. A., and Nedergaard, M., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β., Sci Transl Med, vol. 4, no. 147, p. 147ra111, 2012.
K. Iqbal, Liu, F., Gong, C. - X., and Grundke-Iqbal, I., Tau in Alzheimer disease and related tauopathies., Curr Alzheimer Res, vol. 7, no. 8, pp. 656-64, 2010.
A. Ishikawa, Tokunaga, M., Maeda, J., Minamihisamatsu, T., Shimojo, M., Takuwa, H., Ono, M., Ni, R., Hirano, S., Kuwabara, S., Ji, B., Zhang, M. - R., Aoki, I., Suhara, T., Higuchi, M., and Sahara, N., In Vivo Visualization of Tau Accumulation, Microglial Activation, and Brain Atrophy in a Mouse Model of Tauopathy rTg4510., J Alzheimers Dis, vol. 61, no. 3, pp. 1037-1052, 2018.
N. Iwahara, Hisahara, S., Kawamata, J., Matsumura, A., Yokokawa, K., Saito, T., Fujikura, M., Manabe, T., Suzuki, H., Matsushita, T., Suzuki, S., and Shimohama, S., Role of Suppressor of Cytokine Signaling 3 (SOCS3) in Altering Activated Microglia Phenotype in APPswe/PS1dE9 Mice., J Alzheimers Dis, vol. 55, no. 3, pp. 1235-1247, 2017.

Pages