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SUPPLEMENTARY METHODS

Data pre-processing

The raw data generated from the real-time PCR
analysis was processed prior to statistical analysis to
calculate accurate quantification cycle (Cq) values and
quality check the data to eliminate failed measure-
ments/missing values. The SDS files generated from
the 7900HT Fast Real-Time PCR System were loaded
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into the Sequence Detection Systems software dis-
tributed by Applied Biosystems. Clipped and Results
files are exported for each SDS file. The Clipped-file
contains the baseline-corrected normalized reporter
signal (�Rn) values and the Results file contains the
threshold and the Cq values automatically assigned by
the software.

The threshold is adjusted to a value above the
background and significantly below the plateau of
an amplification plot. It must be placed within the
linear region of the amplification curve, which rep-
resents the detectable log-linear range of the PCR.
One threshold value is set for each assay, as described
below.

1. Log2 is calculated for all available �Rn values.
2. Any Log2(�Rn) values found to be below −6,

are set to NA (not available).
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3. If there are three or more �Rn points available
from the amplification curve, a linear model,
Y = aX + b, are fitted to three and three of the
available Log2(�Rn) points, beginning with the
lowest three points and moving up one point at a
time.

4. All linear models are checked whether their
slopes and residuals are within pre-defined lim-
its. If so, the corresponding Log2(�Rn) points
involved in models which pass the quality control
(QC) criteria, are saved in a register.

5. An upper limit value is set. This value is the high-
est possible threshold value (Log2(�Rn)) found
in the register for this particular assay and sam-
ple combination. A lower limit is set in the same
manner choosing the lowest possible threshold
value (Log2(�Rn)).

The following step is done for each assay across all
samples:

6. A suggested threshold value is calculated: the
mean of all upper limits is calculated and two
standard deviations (SD) are subtracted. The
mean of all lower limits is calculated and two
standard deviations are added. A threshold value
is suggested to be set at upper 15% of the distance
between these two values. Suggested thresh-
old = meanlower + 2 SDlower + ((meanupper−
2 SDupper) − (meanlower + 2 SDlower)) ×
(1−15%).

7. All upper and lower limits are plotted along with
the suggested threshold.

All sample-assay pairs in the data are subjected to
the following procedure to set the Cq values.

1. The intersection point between the given thresh-
old and the Log2(�Rn) curve is found.

2. A linear model, Y = aX + b, is fitted to the closest
Log2(�Rn) point below the intersection, along
with two of the closest points above.

3. Another linear model is fitted to the closest
Log2(�Rn) point above the intersection, along
with two of the closest points below.

4. A QC test is performed on both models to see
whether the model’s slope is above a prede-
fined value and the residual is below a predefined
value.

5. If either one of the models passes the QC test
criteria, the intersection point is set as the Cq
value.

6. The results are saved to a postscript file.

7. Each Cq value along with the corresponding
assay and sample name is stored for further sta-
tistical data analysis.

Component selection and decision boundary
calculation

PLSR and LOOCV were used for model building
and to estimate classification accuracy of the cali-
bration set. Two components were finally selected as
giving the optimum LOOCV efficacy (data not shown),
with the �-coefficients for the final PLS model used
for classification in the range from −3.46 to +3.32.
From this LOOCV plot the results are skewed towards
higher specificity than sensitivity, which could be com-
pensated by changing the decision boundary (cut-off)
from the default value of 0. The ROC for the final
PLS model is shown in Fig. 2. From the LOOCV clas-
sifications observed using the calibration samples, a
possible decision boundary could be −0.077, which
would provide an accuracy of 72.6%. However, from
the LOOCV classifications, any value between −0.077
and −0.029 would give both sensitivity and specificity
above 70%. Therefore after calculation of the mid-
points, a plateau value of −0.04155 was chosen as
the decision boundary in the final model. Classification
values above −0.04155 are thus classified as AD, while
values below −0.04155 are classified as cognitively
healthy.

Diagnostic accuracy calculation and simulation
model

The estimation of accuracy in the calibration and
validation analyses were performed using clinical diag-
nosis as the ‘gold standard’, which has been assumed to
be 100% correct. However, this assumption is overesti-
mated, given that an accurate diagnosis in Alzheimer’s
disease (AD) may vary from 60% at GP clinics to over
90% at some specialized clinics [1–3]. Using the clini-
cal diagnosis as reference will therefore underestimate
the sensitivity and specificity of the test under evalu-
ation. Therefore, a simulation model was prepared to
determine the expected accuracy based on the approach
proposed by Albert [4] that focuses on joint model-
ing of multiple tests, but also includes the test-specific
estimators. From the article:

P(Yij, Ti) =
∑

P(Yij|Ti, di = l)P(Ti|di = l)P(di = l) (1)

where i is the index for subject and j the index for the
test, while P(Ti |di) is estimated from a previous study.
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Supplementary Figure 1. Biological processes represented by the
products of the genes on the array. 1) Apoptosis, 2) Biological pro-
cess unclassified, 3) Carbohydrate metabolism, 4) Cell cycle, 5)
Cell proliferation and differentiation, 6) Cell structure and mobility,
7) Developmental processes, 8) Electron transport, 9) Homeostasis,
10) Immunity and defense, 11) Intracellular protein traffic, 12) Lipid,
fatty acid and steroid metabolism, 13) Miscellaneous, 14) Nucle-
oside, nucleotide and nucleic acid metabolism, 15) Oncogenesis,
16) Other metabolism, 17) Protein metabolism and modification,
18) Protein targeting and localization, 19) Sensory perception,
20) Signal transduction, 21) Transport.

In both the joint modeling and test-specific modeling,
this approach simplifies when P(Yi |Ti,di) = P(Yi |di).
According to Albert the sensitivity and specificity for
the j’th test can be estimated by maximizing the log-
likelihood of (1) separately for each test.

In our study there is only one reference test, the
clinical diagnosis. Thus for our analysis the 96-gene
assay test is Y, the clinical diagnosis is T and d is the
prevalence. If we assume that Y and T are independent,
the equations can be written as:

P(Yi, Ti) =
1∑

l=0

P(Yi|di = l)P(Ti|di = l)P(di = l) (2)

From previous studies we have an estimate of
P(Yi,Ti) (the overall accuracy) and have made some
assumptions regarding the clinically accuracy. If we
assume the sensitivity and specificity are the same in
the clinical setting, then P(Ti|di = l) will have the same
value for both l’s in the above equation. If the assumed
sensitivity and specificity are the same, the prevalence,
P(di = l), for this population will be 50%.

With an overall accuracy of 0.726, the assumed sen-
sitivity and specificity of clinical diagnosis of 0.80 and
a prevalence of 0.50, then equation (2) can be solved
for P(Yi|di = 1) and P(Yi|di = 0). As these are the only
functions of the equation, the maximum likelihood is
calculated as normal. The sum of these must equal
1.815, giving possible combinations ranging from 0.82
to 1.0 for each of the two probabilities. However, the
overall accuracy will be the same for all these combi-
nations, 0.91.

In order to have an overview of the possible impact of
an imperfect gold standard some data simulations have
been performed. The following method/algorithm was
used:

1. One hundred samples were set to have true AD
and 100 as true healthy.

2. Each of these 200 samples was diagnosed as
AD or healthy, with a probability of 80% being
according to true diagnosis (simulation of the
clinical diagnosis).

3. Each of the original 200 samples was diagnosed
as AD or healthy, with different probabilities
(from 60 to 100%) of being in agreement with the
true diagnosis (simulation of the 96-gene assay
or similar test).

4. The results from 3 were then evaluated using 2 as
the gold standard, and the sensitivity according
to clinical diagnosis was calculated.

5. Step 1–4 was repeated 100,000 times for each
probability used in 3.

The results from the simulations, at an assumed clin-
ical accuracy of 80% are shown below:

Assumed Clinical Accuracy

60% 70% 75% 80% 85% 90% 95% 100%

Min 0.340 0.398 0.446 0.480 0.514 0.564 0.604 0.655
Mean 0.560 0.621 0.651 0.681 0.711 0.741 0.771 0.801
Median 0.560 0.621 0.650 0.680 0.711 0.740 0.771 0.800
Max 0.771 0.813 0.844 0.868 0.888 0.912 0.924 0.943

From this table it can be seen that the mean value
and the medians are very similar, and therefore it
can be concluded that the underlying distributions are
symmetric. Minimum and maximum values should be
interpreted in light of 100,000 simulations for each
level of accuracy and are therefore expected to be either
very low or very high.

Considering the mean values, a true accuracy of 85%
would be expected to give an observed accuracy of
71% when compared with the clinical diagnosis, while
100% accuracy would be expected give an observed
accuracy of 80%. In the calibration and validation stud-
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Supplementary Table 1
Genes of known function represented by the probes included in the model. Probes present in the AlzGene list or are associated with AD, other
neurological diseases, neurone or brain functions are indicated in gray shade. AD associated features are indicated with numbers; 1) Amyloid-�,

2) Tau or microtubules, 3) Mitochondrial function, 4) Oxidative stress, 5) Calcium regulation or 6) Inflammation
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Supplementary Table 1
(continued)

Gene
Symbol Gene Name Molecular

Function

A
lz

G
en

e

A
D

O
th

er
 N

eu
r. 

D
is

.

N
eu

ro
ns

/B
ra

in

A
D

 A
ss

oc
.

F
ea

tu
re

R
ef

er
en

ce
s



6 P.D. Rye et al. / A Novel Blood Test for Alzheimer’s Disease

Supplementary Table 1
(continued)
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Supplementary Table 1
(continued)
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Supplementary Table 1
(continued)
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ies an accuracy of 72.6% was observed when compared
with the clinical diagnosis. According to the simula-
tions this would correspond to accuracy slightly larger
than 85%. It should also be noted that the mean values
are all smaller than the assumed test accuracy, which
means that the observed accuracy, when comparing
with the clinical diagnosis, is most likely underesti-
mated.

Therefore, comparing the results of the 96-gene
assay test with an imperfect gold standard will most
likely underestimate the accuracy. Assuming an accu-
racy of 80% for the clinical diagnosis compared with
the truth, the above calculations and simulations sug-
gest that the accuracy of the 96-gene assay test is in the
range 85%–90% when compared with the underlying
truth.
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Supplementary Table 2
Patient data for calibration cohort
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Supplementary Table 2
(continued)
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Supplementary Table 2
(continued)
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Supplementary Table 2
(continued)
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Supplementary Table 2
(continued)
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Supplementary Table 2
(continued)



P.D. Rye et al. / A Novel Blood Test for Alzheimer’s Disease 15

Supplementary Table 3
Patient data for initial validation cohort
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Supplementary Table 3
(continued)
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Supplementary Table 4
Patient data for extended validation cohort
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Supplementary Table 4
(continued)
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Supplementary Table 4
(continued)
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