
Journal of Alzheimer’s Disease 27 (2011) 1–3
IOS Press

1

Supplementary Data

A Disease State Fingerprint for Evaluation
of Alzheimer’s Disease

Jussi Mattilaa,∗, Juha Koikkalainena, Arho Virkkia, Anja Simonsenb, Mark van Gilsa,
Gunhild Waldemarb, Hilkka Soininenc, Jyrki Lötjönena and for The Alzheimer’s Disease
Neuroimaging Initiative**
aVTT Technical Research Centre of Finland, Tampere, Finland
bDepartment of Neurology, Section 2082, The Copenhagen Memory Clinic & The Memory Disorders
Research Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
cDepartment of Neurology, Kuopio University Hospital, Kuopio, Finland

Accepted 26 May 2011

SUPPLEMENTARY DATA

Derivation of the fitness function for scalar
variables

Suppose first that x is a random variable from a
distribution combining both control (e.g. healthy) and
positive (e.g., disease) subjects, marked with C and
P. In addition, assume that the progression of disease
increases the observed values of x, making the condi-
tional expected value E(x|P) higher for positives than
the corresponding value E(x|C) for the controls (see
Fig. 1).

Let us divide the probability density f into the com-
ponents fC and fP , such that

f (x) = fC(x) + fP (x)

= f (x|C)p(C) + f (x|P)p(P) (1)

∗∗ Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of
this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wp-content/uploads/how to apply/ADNI
Authorship List.pdf.
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Fig. 1. Probability density function f(x) and its components fC and
fP for the control and positive groups and, respectively.

where f (x|C) and f (x|P) are the marginal dis-
tributions of C and P, and the probabilities p(C)
and p(P) correspond to the overall fraction of
controls and positives in the study population,
respectively. These values are related by the equa-
tion

∫
R

f (x)dx = ∫
R

[
fC(x) + fP (X)

]
dx = p(C) +

p(P) = 1, obtained by integrating (1).
Bayes’ theorem states that the conditional prob-

ability of a subject belonging to the group P after
observing x ∈ A = (a − ε; a + ε), where ε is the
radius of a small region around the actual observation
a, can be written as
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Fig. 2. Conditional probability and fitness computed with two distributions of control and positive cases. On the left, synthetic data with no
outlier observations produces monotonously increasing curves with both methods. On the right, data with wide distribution tails causes drastic
change to conditional probability behavior, rendering it sub-optimal for human interpretation.

p(P |x ∈ A) = p(x ∈ A|P)p(P)

p(x ∈ A)

= p(x ∈ A|P)p(P)

p(x ∈ A|P)p(P) + p(x ∈ A|C)p(C)

→ fP (x)

fP (x) + fC(x)
, (2)

when ε → 0. While estimating the probability den-
sities from empirical data, one needs to smooth the
estimates e.g. by using a sufficiently wide kernel esti-
mate, or to use a large enough ε to compensate for the
measurement noise and errors caused by the finite num-
ber of samples. If ε is chosen to be too large, p(P |x∈A)
approaches the a priori fraction of the positive cases
p(P)/(p(P) + p(C)), and equation (2) loses its predic-
tive power. The values p(P) and p(C), also called the
“a priori” probabilities, are needed when applying the
Bayes’ rule. This can be a great asset, but could also be
regarded as a drawback when used or interpreted incor-
rectly. In addition, distributions of the form (2) have
also some inconvenient properties, which can make
their interpretation difficult, as shown later in Fig. 2.

Instead of using conditional probability (2), let us
introduce a fitness function Fit(a), which increases
monotonously. In a sense, fitness describes the loca-
tion of the subject with value a relative to distributions
fC and fP . Let us first define the left and right integrals
for fC and fP ,

LP (a) :=
∫ a

−∞
fP (x) dx and

RC(a) :=
∫ ∞

a

fC (x) dx, (3)

which are also illustrated in Fig. 1. For completeness,
RP (a) and LC(a) are defined in an analogous manner.
If one consider value a as the clinical threshold for
classification between the controls C and positives P,
one can construct a new boolean classifier, described
in Table 1.

Table 1
Classification performance when using the value a as the threshold

to discriminate between controls C and positives P

P 

False Negatives 

)(aLP

True Positives 

)(aRP

C 

True Negatives 

)(aLC

False Positives 

)(aRC

x < a x > a 

Table 1 shows that P(x ≤ a) = LC(a) + LP (a)
and P(x > a) = RC(a) + RP (a) for the columns and
P(P) = LP (a) + RP (a) and P(C) = LC(a) + RC(a)
for the rows. In particular, the fraction of rejection
errors (false negatives) from all the errors (both false
negative and false positive) can be written as

Fit(a)∗: = FN(a)

FN(a) + FP(a)
= LP (a)

LP (a) + RC(a)
, (4)

where the abbreviations FN and FP refer to false
negatives and positives, i.e. the counts of incorrectly
classified instances. It is obvious from equation (4)
that Fit(a)∗ ∈ [0, 1] and one can intuitively expect that
Fit(a)* increases along with increasing values of a,
which is proved by differentiating (4):

d

da
Fit(a)∗ =

d
da

LP (a)RC(a) − LP (a) d
da

RC(a)

[LP (a) + RC(a)]2

= fP (a)RC(a) + LP (a)fC(a)

[LP (a) + RC(a)]2

≥ 0 for each a, (5)

In the special case LP (a) = RC(a) = 0 where (5) is
not defined, the result can be interpolated from closest
values of a where (5) is defined. Finally, to eliminate
the influence caused by varying proportions of p(P)
and p(C) between different populations, the normal-
ized fitness value is defined as
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Fit(a): = LP (a)/p(P)

LP (a)/p(P) + RC(a)/p(C)
(6)

Derivation of the fitness function can be conducted in
an analogous manner if populations are interchanged,
resulting in a monotonously decreasing function. In
addition, alternate formulations of fitness functions to
account for non-continuous variables, such as nomi-
nal and ordinal variables, can also be derived easily by
counting these values as point masses while comput-
ing the integrals. The resulting fitness values obtained
by evaluating (6) are in many situations close to the
conditional probabilities (2) but fitness behaves in a
more intuitive manner with real-life empirical distri-
butions, as demonstrated in Fig. 2. For example, it is
known that atrophy decreases the size of hippocampus
in Alzheimer’s disease; the smaller the size of hip-
pocampus the higher the DSI value should be, i.e.,
the function should be monotonous. However, if the
number of cases in the training set is small and con-
ditional probabilities are used, posterior probability
can decrease even while the hippocampus volume is
decreasing.

It merits restating that the number of instances in
either class of the training set does not bias fitness
(6), which makes it robust against disparity between
the numbers of class instances. Since the fitness val-
ues are not intended to be used solely as a machine
learning classifier but accompanied with visual anal-
ysis tools, this choice offers more intuitive ratings
for measured values. Additional information related
to the class probabilities, i.e., disease incidence and
prevalence, should be presented to clinicians via the
graphical user interface.

Derivation of the composite Disease State Index

In clinical practice, multiple variables must be
considered simultaneously. Combining results from
several fitness functions would allow evaluation of
large quantities of heterogeneous patient data at once.
Due to its simplicity and interpretability, the weighted
arithmetic mean is employed for combining fitness

values. Let us define the composite Disease State Index
(DSI) as

DSI(a1, a2, . . . , an): =
∑n

i=1 wiFit(ai)

w1 + w2 + · · · + wn

, (7)

where [a1, a2, . . . , an] are the data measured from the
subject and w = w1, w2, . . . , wn are the non-negative
weights for each of the variables according to their
relevance. Relevance is a parameter quantifying a
variable’s ability to differentiate classes C and P. To
compute the relevance of the ith variable, the classi-
fication accuracy is estimated by applying the fitness
function to the training data itself:

Acc(i) = |CT : Fit(ai) < 1
2 | + |PT : Fit(ai) > 1

2 |
|CT | + |PT | (8)

where CT and PT are the corresponding training sets
for the controls and positives (with the i:th variable
present) and 1

2 is the classifier threshold value for a.
Now, relevance of a variable is formally defined as

Rel(i): = max

{

0,

(

Acc(i) − 1

2

)

∗ 2

}

. (9)

If the relevance is zero, it discriminates the classes
as poorly as a random label. A relevance of one
indicates that the variable is capable of fully discrim-
inating between training classes C and P, thus being
an excellent candidate for estimating the disease state.
Substituting wi in (7) with (9) yields

DSI(a1, a2, . . . , an): =
∑n

i=1 Rel(i)Fit(ai)∑n
i=1 Rel(i)

. (10)

It is clear from (10) that like fitness, composite
DSI(a1, a2, . . . , an) ∈ [0, 1]. It must be emphasized
that DSI cannot be considered as the probability of
having the disease. Instead, it is a score that increases
with the probability of having the disease, taking into
account the assumption that having abnormally high
(or low) values is worse than being inside the normal
range. Thus, DSI is defined as a value derived from
a series of observed facts that describes the rank of
patient data relative to control and positive cases.


