Supplementary Data

Validation of a Multiplex Assay for Simultaneous Quantification of Amyloid-β Peptide Species in Human Plasma with Utility for Measurements in Studies of Alzheimer's Disease Therapeutics

D. Richard Lachno^{a,*}, Julie K. Emerson^b, Hugo Vanderstichele^{c,1}, Celedon Gonzales^d,

Ferenc Martényi^d, Robert J. Konrad^d, Jayne A. Talbot^d, Stephen L. Lowe^e, Paul E. Oefinger^b and Robert A. Dean^d

^aEli Lilly and Company, Windlesham, UK

^bCovance Central Laboratory Services, Inc., Indianapolis, IN, USA

^cInnogenetics NV, Gent, Belgium

^dLilly Research Laboratories, Indianapolis, IN, USA

^eLilly-NUS Centre for Clinical Pharmacology Pte Ltd, Singapore

Accepted 29 June 2012

	Canoration performance summary for validation test batches									
Calibrator level	Concentration (ng/L)									
	1 ^a	2	3	4	5	6	7	8 ^b		
Αβ ₁₋₄₀										
Theoretical concentration	1288	515	146	67	31	12	4.0	1.33		
Back-calculated mean $(n=43)$	-	456	163	65	30	12	4.1	1.28		
CV %	_	4.0	3.9	2.4	2.2	2.3	2.8	1.7		
RE %	-	-11.5	11.3	-3.6	-2.6	4.0	3.2	-3.5		
Αβ1-42										
Theoretical concentration	495	198	79	32	13	5.0	1.67	0.56		
Back-calculated mean $(n=43)$	496	200	77	32	14	4.7	1.87	0.42		
CV %	1.3	2.6	2.1	1.8	1.6	1.7	5.4	16		
RE %	0.1	1.0	-1.9	0.4	5.3	-5.7	11.9	-25		

Supplementary Table 1 ibration performance summary for validation test batche

CV, coefficient of variation; RE, relative error; ^aLevel 1 A β_{1-40} calibrator saturated the fluorescence response of the Bio-Plex 200 instrument and was omitted; ^bA β_{1-42} Level 8 calibrator omitted from calibration curve.

¹Present: Biomarkable, Gent, Belgium.

*Correspondence to: Dr. D.R. Lachno, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK. Tel.: +44 1276 483508; Fax: +44 1276 483416; E-mail: drlachno@lilly.com. $\label{eq:supplementary Table 2} Supplementary Table 2 \\ Relative accuracy (as RE) and precision (as CV) of A\beta quantification \\ at \leq the LLOQ. The V1 plasma pool was serially diluted with kit plasma diluent. Six replicates of each dilution were assayed in a single batch$

	Concent	ration (ng/L)
	Αβ ₁₋₄₀	Αβ ₁₋₄₂
V1 Pool assigned concentration	8.4	7.6
x1 Dilution		
Mean $(n=6)$	7.9	7.6
Intra-assay CV %	2.3	7.9
Intra-assay RE %	-5.9	0
x2 Dilution ^a		
Mean $(n=6)$	3.6	_
Intra-assay CV %	4.5	_
Intra-assay RE %	-14.3	_
x4 Dilution ^a		
Mean $(n=6)$	1.8	_
Intra-assay CV%	3.9	_
Intra-assay RE %	-13.9	_
x8 Dilution ^a		
Mean $(n=6)$	1.1	_
Intra-assay CV%	3.4	_
Intra-assay RE %	0.6	-

CV, coefficient of variation; RE, relative error; ^aSignal out of range for $A\beta_{1-42}$.

Supplementary Table 3

 $Quantification of A\beta_{1-40} and A\beta_{1-42} in the presence of three investigational drug compounds (up to 2 \times C_{max} concentration)$

	Aβ ₁₋₄₀ (ng/L)				$A\beta_{1-42}$ (ng/L)					
solanezumab (mg/L)	0	50	250	500 ^a	1000	0	50	250	500 ^a	1000
Mean (n=3)	155	79	85	91	106	36	16	16	17	16
CV %	1.9	2.0	2.8	2.7	2.6	1.3	0.0	1.1	2.4	2.7
% difference from control		-49	-45	-41	-32		-57	-55	-53	-54
semagacestat (mg/L)	0	0.5	2.5	5 ^a	10	0	0.5	2.5	5 ^a	10
Mean $(n=3)$	173	179	178	177	174	36	37	38	37	37
CV %	1.8	4.5	1.1	1.5	2.1	0.7	1.7	0.1	0.8	1.2
% difference from control		3.9	3.2	2.7	0.9		2.5	3.1	1.8	2.2
LY2811376 (mg/L)	0	0.1	0.5	1 ^a	2	0	0.1	0.5	1^{a}	2
Mean $(n=3)$	102	98	94	92	91	24	23	23	23	23
CV %	9.4	2.7	3.4	4.3	5.9	1.0	2.3	1.5	2.2	2.1
% difference from control		-4.4	-8.3	-10.1	-10.7		-3.1	-2.5	-4.6	-5.1

CV, coefficient of variation; RE, relative error; ^aProjected therapeutic C_{max} concentration.

Supplementary Figure 1. Representative overlaid calibration plots (runs 1–6: relative accuracy and precision determinations) for A β_{1-40} and A β_{1-42} . Calibration ranges for A β_{1-40} and A β_{1-42} were 1.33–515 ng/L and 1.67–495 ng/L respectively.

Supplementary Figure 2. Analyte spike recovery. The effects of incubation time and temperature on the recovery of A β peptides spiked at 3 concentrations into plasma, immuno-depleted human plasma (IHP) and kit plasma diluent (PD). Analyte recovery in each treatment was calculated as percentage of baseline (Time = 0 h) value. Each matrix type was spiked with synthetic A β_{1-40} and A β_{1-42} peptides, respectively (ng/L): Low (50, 25); Mid (200, 100); High (1000, 500).

Supplementary Figure 3. Stability of A β peptides in 6 individual plasma pools stored at $\leq -20^{\circ}$ C up to 12 months and during five freeze-thaw cycles from $\leq -20^{\circ}$ C.

Supplementary Table 4

Analytical specificity of the INNO-BIA plasma Aβ forms. Purified Aβ peptide species of known concentration in buffer were tested in the INNO-BIA plasma assay using the standard test procedure. Cross reactivity was calculated using measured median fluorescence intensity values, adjusted for analyte concentration

Peptide identity		Αβ	1-40	Αβι	-42
	Concentration	MFI ^a	Reactivity	MFI ^a	Reactivity
	(ng/L)	(n=2 runs)	(%)	(n=2 runs)	(%)
Αβ ₁₋₄₀	75	6602		13	0.2
	2000	27026		134	0.5
Αβ ₁₋₄₂	100	46	0.5	7305	
	2000	639	2.4	26295	
Αβ ₈₋₄₂	2000	5	0	3	0
	10000	6	0	4	0
$A\beta_{1-40}/A\beta_{1-42}$	75/100	6595	100	6836	94
$A\beta_{1-40}/A\beta_{8-42}$	75/100	6620	100	13	0.2
Αβ ₁₋₃₈	2000	5	0	2	0
• • •	10000	6	0	2	0
Αβ ₁₋₃₉	2000	7342	27	6	0
	10000	17013	13	17	0
Rat AB1-42	2000	58	0.2	141	0.5

^aMedian fluorescence intensity.