1 # Supplementary Data # Corticotropin-Releasing Factor Receptor 1 Activation During Exposure to Novelty Stress Protects Against Alzheimer's Disease-Like Cognitive Decline in AβPP/PS1 Mice Gillian A. Scullion^a, Katherine N. Hewitt^{a,b} and Marie-Christine Pardon^{a,*} Handling Associate Editor: Laura Petrosini Accepted 5 December 2012 ^a University of Nottingham Medical School, School of Biomedical Sciences, Neurodegeneration' group, Queen's Medical Centre, Nottingham, UK ^bDepartment of Experimental Psychology, University of Oxford, Oxford, UK ^{*}Correspondence to: Marie-Christine Pardon, PhD, University of Nottingham Medical School, School of Biomedical Sciences, Neurodegeneration' group, Queen's Medical Centre, Nottingham, NG7 2UH, UK. Tel.: +44 115 82 30149; Fax: +44 11582 30142; E-mail: marie.pardon@nottingham.ac.uk. Supplementary Figure 1. ## Supplementary Table 1 At the end of the 5 weeks of novelty sessions, baseline corticosterone levels were no longer elevated in TASTPM mice (genotype: $F_{(1,28)} = 0.18$; p = 0.67) and baseline adrenocorticotropic hormone (ACTH) levels did not differ (genotype: $F_{(1,20)} = 0.59$; p = 0.45) irrespective of the injection status (ACTH: $F_{(1,20)} = 0.11$; p = 0.74; corticosterone: $F_{(1,28)} = 2.81$; p = 0.10). Activity levels in the open-field were not significantly altered by the genotype ($F_{(1,32)} = 2.25$; p = 0.14) or the repeated injections ($F_{(1,32)} = 1.23$; p = 0.27) in unexposed mice. Hippocampal synaptophysin levels were reduced in TASTPM mice (genotype: $F_{(1,22)} = 1.99$; p = 0.17; injections : $F_{(1,22)} = 4.12$; p = 0.06). Synaptophysin levels in the frontal cortex were unaltered by the genotype ($F_{(1,32)} = 2.12$; p = 0.15) or repeated injections ($F_{(1,32)} = 0.39$; p = 0.54). Hippocampal PSD95 levels were reduced in TASTPM mice and by repeated injections in wild-type (WT) mice, but increased in injected TASTPM mice (genotype × injection: $F_{(1,32)} = 20.29$; p < 0.001), while those levels in the frontal cortex were unaltered by any of the experimental conditions (genotype: $F_{(1,22)} = 0.05$; p = 0.83; injections : $F_{(1,22)} = 0.00$; p = 0.96) | | WT | | TASTPM | | |-------------------------------------|-------------------|-------------------|-------------------|-------------------| | | Non-injected | Injected | Non-injected | Injected | | ACTH (ng/ml) | 2.51 ± 0.21 | 3.51 ± 0.62 | 3.79 ± 0.33 | 2.97 ± 0.40 | | Corticosterone (log10 pg/ml) | 1.12 ± 0.10 | 1.18 ± 0.12 | 1.04 ± 0.12 | 1.37 ± 0.15 | | Distance moved in open-field (m) | 63.11 ± 2.16 | 54.56 ± 3.67 | 53.88 ± 1.97 | 54.73 ± 3.69 | | Synaptophysin (% of undisturbed WT) | | | | | | Hippocampus | 100.00 ± 3.42 | 97.29 ± 5.72 | 93.92 ± 3.58 | 91.56 ± 3.40 | | Frontal Cortex | 100.00 ± 3.59 | 93.96 ± 5.06 | 98.57 ± 2.67 | 90.56 ± 2.82 | | PSD95 (% of undisturbed WT) | | | | | | Hippocampus | 100.00 ± 4.43 | 82.33 ± 3.97 | 78.85 ± 4.53 | 95.76 ± 2.00 | | Frontal Cortex | 100.00 ± 4.35 | 107.17 ± 3.63 | 105.46 ± 3.90 | 100.09 ± 2.64 | ## Supplementary Table 2 None of the experimental conditions altered plasma adrenocorticotropic hormone (ACTH) $(F_{(4,34)} = 1.25; p = 0.31)$ or corticosterone levels $(F_{(4,40)} = 1.25; p = 0.49)$, body weight $(F_{(3,36)} = 0.03; p = 0.99)$ or the distance travelled in the open-field $(F_{(4,47)} = 1.1; p = 0.37)$ in TASTPM mice | | Vehicle | Novelty + vehicle | Novelty + CP154,526 | Novelty + MK801 | Novelty + CP & MK | |----------------------------------|------------------|-------------------|---------------------|------------------|-------------------| | ACTH (ng/ml) | 2.97 ± 0.39 | 3.53 ± 0.64 | 3.16 ± 0.38 | 4.02 ± 0.42 | 4.10 ± 0.47 | | Corticosterone (log10 pg/ml) | 1.28 ± 0.14 | 1.05 ± 0.17 | 1.06 ± 0.11 | 1.32 ± 0.17 | 1.31 ± 0.13 | | Body weight (g) | | | | | | | Baseline | 26.50 ± 0.71 | 26.13 ± 0.60 | 26.60 ± 0.70 | 26.72 ± 0.53 | 26.54 ± 0.42 | | After repeated novelty | 27.33 ± 0.89 | 26.25 ± 0.57 | 26.97 ± 0.42 | 26.74 ± 0.65 | 27.04 ± 0.71 | | Distance moved in open-field (m) | 54.73 ± 3.70 | 51.44 ± 4.80 | 53.43 ± 4.07 | 44.15 ± 3.21 | 54.73 ± 5.51 | Supplementary Figure 1. TASTPM mice exhibit altered hypothalamic-pituitary-adrenal responses to stress at a prepathological age. Wild-type (WT) and TASTPM mice aged 4 months were exposed to an acute 1-hour novelty session at the end of which trunk blood, hippocampi and frontal cortex were collected. A) This challenge significantly increased adrenocorticotropic hormone (ACTH) levels in WT (p = 0.04) but not TASTPM mice (p = 0.45) but baseline levels were unaltered (novelty: $F_{(1,47)}$ = 3.68; p = 0.048). B) Corticosterone release was also induced in both WT (p < 0.001) and TASTPM (p < 0.001) mice (novelty: $F_{(1,50)}$ = 171.92; p < 0.001). Although, TASTPM mice exhibited higher basal (p < 0.001) but not novelty-induced (p = 0.11) circulating levels of corticosterone (genotype: $F_{(1,50)}$ = 14.83; p < 0.001), but both genotypes showed a similar rise in plasma corticosterone levels (+306.32 ± 48.50% for WT and +311.89 ± 44.95% for TASTPM mice). Synaptophysin levels of WT and TASTPM mice did not differ significantly in both the hippocampus ($F_{(1,28)}$ = 0.96, C) and frontal cortex ($F_{(1,28)}$ = 0.42; p = 0.47, D) and were unaltered by a single exposure to novelty (C, hippocampus: $F_{(1,28)}$ = 0.99; p = 0.33 & D, frontal cortex: $F_{(1,28)}$ = 0.25; p = 0.62). In contrast, PSD95 levels of TASTPM mice were selectively reduced in the hippocampus ($F_{(1,28)}$ = 1.385; p < 0.001, E) but not frontal cortex ($F_{(1,28)}$ = 0.42; p = 0.57; p = 0.36, F), and unaltered by a single exposure to novelty (E, hippocampus: $F_{(1,28)}$ = 0.14; F, frontal cortex: $F_{(1,28)}$ = 0.42; p = 0.52). Glutamate levels in the hippocampus (G) and frontal cortex (H) were unaltered in TASTPM mice (Genotype: $F_{(1,22)}$ = 0.25; p = 0.62 and $F_{(1,28)}$ = 1.99; p = 0.17, respectively) or by acute exposure to novelty ($F_{(1,22)}$ = 0.58; $F_{(1,23)}$ = 0.46; $F_{(1,23)}$ = 0.47; $F_{(1,23)}$ = 0.47; $F_{(1,23)}$ = 0.48; $F_{(1,23)}$ = 0.49; $F_{(1,23)}$ = 0.49; $F_{(1,23)}$ = 0.40; $F_{(1,23)}$ Supplementary Figure 2. Behavioral and physiological stress responses of TASTPM mice. 4-month-old wild-type (WT) and TASTPM mice were subjected to a 1-hour novelty session 30 minutes after receiving an i.e.v. injection of saline, CRFR1 or CRFR2 antagonists (7 nmol CP154,526 and 100 pmol anti-sauvagine, respectively). A) TASTPM mice exhibited higher frequency of tail rattling than WT mice ($F_{(1,39)} = 27.16$; p < 0.001), and this behavior was not altered by CRFR1 or CRFR2 antagonism (Treatment: $F_{(1,39)} = 0.94$; p = 0.40). *p < 0.05 compared to WT mice (same treatment). B) Defecations induced by the acute exposure to novelty were not significantly increased in TASTPM mice (genotype: $F_{(1,39)} = 0.00$; p = 0.96) or altered by blockade of novelty-induced CRFR1 or CRFR2 activation in either genotype (Treatment: $F_{(1,39)} = 1.01$; p = 0.75). C) In TASTPM mice, the defecation rate increased with repeated exposure to novelty ($F_{(19,760)} = 2.81$; p < 0.001), but was decreased by blocking novelty-induced CRFR1 activation and increased by antagonism of novelty-induced NMDAR activation (p = 0.03 and p = 0.003 versus vehicle-treated TASTPM), an effect attenuated by co-treatment with CP154,526 (p = 0.16 versus vehicle-treated TASTPM, Treatment: $F_{(3,40)} = 10.48$; p < 0.001). *p < 0.05, *p < 0.05 versus vehicle-treated TASTPM.