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SUPPLEMENTARY DATA 1

The extraction of lipidated ApoE from astroglia
culture

Formation of apolipoprotein E (ApoE) and amyloid-
B (AB) complexes and their endocytosis by LDL-
receptor related protein 1 (LRP1) have been shown
to play critical roles in endothelial AR efflux and
microglial AB degradation [1, 2]. In the brain, ApoE
is expressed and lipidated by ATP-binding cassette
sterol transporter ABCA1 principally by astroglia in
response to the activation of liver X-recepors (LXRs)
[3]. Therefore, the primary cultured rat astrocytes
were incubated with synthetic LXR agonist TO901317
(TO; 10 wM) for 3 days and the resulted media was
concentrated with Centricon® 10kDa cut-off centrifu-
gal concentrator (Millipore). The 20X concentrated
conditioned media then diluted with fresh DMEM
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and re-concentrated three times to minimize resid-
ual TO901317 from media. The resulted conditioned
media was subjected to western blot to confirm the
expression of ApoE as shown in the Supplementary
Figure S1 (Supplementary Figure 1A). To confirm the
lipidation of ApoE, the concentrated media obtained
from control (CON) or TO901317 (TO) treated astro-
cyte culture were subjected to iodixanol density
gradient ultracentrifuge as described previously [4].
Purified LDL and HDL (EMD Biosciences) were used
as the standards for lipoprotein density. Following
the fractionation, the protein levels of ApoE, ApoB,
and ApoAll in the fractions of astroglial conditioned
media, LDL, and HDL, respectively, were analyzed by
western blot to determine the density of ApoE particles
in astroglial conditioned media. The data presented in
Suppl. Figure 1B-i and ii indicate that ApoE particles
generated from astroglia is lipidated particles that has
similar density range with HDL.

Studies have demonstrated that the lipidation of
ApoE increases its binding affinity to AR [5], and
facilitates the AP clearance by enhancing the activi-
ties of microglial degradation and endothelial efflux
[1, 2]. To examine whether ApoE particles extracted
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Supplementary Figure 1. The extraction of lipidated ApoE from astroglia culture. A) The effect of LXR agonist TO901317 (TO; 10 wM/2 days)
on ApoE expression was examined in primary cultured rat astroglia. B) The lipidation of ApoE particles from astroglial media was examined
by iodixanol density gradient ultracentrifuge (i). Purified LDL (ApoB) and HDL (ApoAll) were used as the standards for lipoprotein density
(ii). C) The physical interaction between astroglia-secreted ApoE particles and A4, was analyzed by iodixanol density gradient ultracentrifuge
following the incubation of green fluorescence (FAM)-labeled AB4, with basal media (BM; DMEM alone) or concentrated conditioned media
obtained from TO-treated astroglia (CM). Following the fractionation, green fluorescence in each fraction was measured and expressed as a
percent of total fluorescence intensity (i). The change in AP distribution was also expressed by subtracting fluorescence intensities of each
fraction of CM from that of BM.
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Supplementary Figure 2. GSNO treatment inhibits AB-induced inflammatory gene expression. A) The effect of GSNO pretreatment and
interferon-y (IFN<y)/AB25-35 treatment on NFkB-mediated luciferase expression was analyzed by dual luciferase assay system according to the
instruction manual (Promega). For this, BV2 immortalized murin microglial cells were transfected with pNFkB-Luc which expresses luciferase
in response to NFkB activation and pRL-TK plasmid as a transfection control. Next day, the cells were incubated in serum free media overnight
and treated with GSNO (250 uM) and AB25-35 (10 uM) and IFNy (25 ng/ml). GSNO was pretreated 3 hrs prior to AB25-35/IFNy treatment. The
cells were then incubated for 24 h and analyzed for luciferase activity. B) To examine the effect of GSNO treatment on microglial iNOS and
COX-2 expression, BV2 microglial cells were pretreated with increasing doses of GSNO, treated with ABs-35/IFNvy, and analyzed for iNOS
and COX-2 protein levels by western blot. The B-actin was used for internal loading control.

from astroglia culture indeed are able to interact with was analyzed by measuring fluorescence in each frac-
AP, the basal media (BM; fresh DMEM) which did tion (Supplementary Figure 1C-i). We observed that
not contain any lipoprotein particles or concentrated the incubation of AP with the astroglial conditioned
conditioned media (CM) which was obtained from media increased the AB-distribution in the fractions
TO901317 treated astroglia was incubated with fluo- containing HDL-like ApoE particles (fraction# 6 8)
rescence labeled AB4; for 1 h at 37°C and subjected to (Supplementary Figure 1C-ii), thereby suggesting the
iodixanol density gradient ultracentrifuge. Following existence of physical interaction between astroglia-

the fractionation, the distribution of Af3 in the gradient derived HDL-like ApoE particles and A3 peptide.
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SUPPLEMENTARY DATA 2

The anti-inflammatory activity of GSNO in
microglia

Anti-inflammatory effect of GSNO has been pro-
posed by many laboratories, including ours [6—12].
To examine whether GSNO treatment is able to
inhibit AB-induced proinflammatory gene expression
in microglia, cultured BV2 murine microglia was pre-
treated with GSNO, treated with synthetic A3 peptide
(AB25-35; 10 wM) and interferon-y (IFNvy; 25 ng/ml),
and analyzed for NFkB activation and gene expression
of iNOS and COX-2. The data presented in Supple-
mentary Figure 2A and B show that the increased
activities of NFkB and gene expression of iNOS
and COX-2 were efficiently suppressed by GSNO
pretreatment, suggesting that GSNO is a potent anti-
inflammatory agent under AB-induced inflammatory
conditions.
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