Journal of Alzheimer's Disease
Published on Journal of Alzheimer's Disease (https://www.j-alz.com)

Home > Linguistic Features Identify Alzheimer's Disease in Narrative Speech.

TitleLinguistic Features Identify Alzheimer's Disease in Narrative Speech.
Publication TypeJournal Article
Year of Publication2016
AuthorsFraser, KC, Meltzer, JA, Rudzicz, F
JournalJ Alzheimers Dis
Volume49
Issue2
Pagination407-22
Date Published2016
ISSN1875-8908
KeywordsAged, Aged, 80 and over, Alzheimer Disease, Diagnosis, Computer-Assisted, Factor Analysis, Statistical, Female, Humans, Language Disorders, Linguistics, Logistic Models, Machine Learning, Male, Mental Status Schedule, Middle Aged, Narration, Photic Stimulation, Speech, Verbal Behavior
Abstract

BACKGROUND: Although memory impairment is the main symptom of Alzheimer's disease (AD), language impairment can be an important marker. Relatively few studies of language in AD quantify the impairments in connected speech using computational techniques.

OBJECTIVE: We aim to demonstrate state-of-the-art accuracy in automatically identifying Alzheimer's disease from short narrative samples elicited with a picture description task, and to uncover the salient linguistic factors with a statistical factor analysis.

METHODS: Data are derived from the DementiaBank corpus, from which 167 patients diagnosed with "possible" or "probable" AD provide 240 narrative samples, and 97 controls provide an additional 233. We compute a number of linguistic variables from the transcripts, and acoustic variables from the associated audio files, and use these variables to train a machine learning classifier to distinguish between participants with AD and healthy controls. To examine the degree of heterogeneity of linguistic impairments in AD, we follow an exploratory factor analysis on these measures of speech and language with an oblique promax rotation, and provide interpretation for the resulting factors.

RESULTS: We obtain state-of-the-art classification accuracies of over 81% in distinguishing individuals with AD from those without based on short samples of their language on a picture description task. Four clear factors emerge: semantic impairment, acoustic abnormality, syntactic impairment, and information impairment.

CONCLUSION: Modern machine learning and linguistic analysis will be increasingly useful in assessment and clustering of suspected AD.

DOI10.3233/JAD-150520
Alternate JournalJ. Alzheimers Dis.
PubMed ID26484921
Grant ListAG003705 / AG / NIA NIH HHS / United States
AG005133 / AG / NIA NIH HHS / United States
R01-DC008524 / DC / NIDCD NIH HHS / United States
E-mail Icon
Comment Icon
  • Comment
Bookmark Icon Bookmark Recommend Icon Recommend Follow Icon Follow
  • Comment
| Bookmark | Recommend | Follow

Source URL: https://www.j-alz.com/content/linguistic-features-identify-alzheimers-disease-narrative-speech