Title | The Novel DA-CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1ΔE9 Mouse Model. |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Panagaki, T, Gengler, S, Holscher, C |
Journal | J Alzheimers Dis |
Volume | 66 |
Issue | 1 |
Pagination | 195-218 |
Date Published | 2018 |
ISSN | 1875-8908 |
Abstract | Alzheimer's disease (AD) afflicts more than 46.8 million people worldwide, with a newly diagnosed case every 3 seconds and no remission in the disease progression. The discovery of disease-modifying drugs is now on the summit of the neuropharmacological research priorities. The long-lasting derivatives of the insulinotropic incretin hormones-glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)-have repeatedly been shown to cross the blood-brain barrier and counteract an array of deleterious effects across a range of experimental models of neuronal degeneration. Clinical trials for the efficacy of GLP-1 agonists in Alzheimer's and Parkinson's diseases have revealed beneficial effects of these anti-diabetic agents in halting neuronal degeneration progression. Herein, we examine whether the chronic treatment with the novel dual GLP-1/GIP receptor agonist DA-CH3 can restore the cognitive decline and AD-like cerebral pathology of the APPSWE/PS1ΔE9 mouse model at the age of 10 months old. We report that once-a-daily, eight-week intraperitoneal administration of 25 nmol/kg of the novel DA-CH3 dual-incretin analog rescues the spatial acquisition and memory impairments of this murine model that corresponds to the attenuation of the excessive plaque deposition, gliosis and synaptic damage in the APPSWE/PS1ΔE9 brain. The amelioration of the AD-related pathology reflects the resolution of the endoplasmic-reticulum stress and derailed autophagy that both lay downstream of the rectified Akt signaling. Collectively, our findings endorse the beneficial effects of the incretin-based therapeutic approaches for the neurotrophic support of the AD brain and for the first time associate the incretin-induced neuroprotection with the proteostasis machinery in vivo. |
DOI | 10.3233/JAD-180584 |
Alternate Journal | J. Alzheimers Dis. |
PubMed ID | 30282365 |