Volume 60, Supplement 1, 2017

Pages S1-S2

K.S. Jagannatha Rao, George Perry, Y.Z. Zhu, Muralidhar L. Hegde, Thomas von Zglinicki, Miguel A. Perez-Pinzon
Molecular Pathways in Normal Aging and Neurodegeneration: Mechanisms and Therapeutics
Dedicated in honor of Dr. Arturo D. Melo S., who inspired the building of neuroscience research in the Republic of Panama

Pages S3-S23
Mohan Sathya, Ponnusamy Moorthi, Palanisamy Premkumar, Mahesh Kandasamy, Kesavan Swaminathan Jayachandran, Muthuswamy Anusuyadevi
Resveratrol Intervenes in the Cholesterol- and Isoprenoid-Mediated Amyloidogenic Processing of AβPP in Familial Alzheimer’s Disease
Abstract: Deterioration of cholesterol metabolism has recently been a frontier subject of investigation in the field of Alzheimer’s disease (AD). Though amyloid-β protein precursor (AβPP) primes the pathological cascade, changes in cholesterol levels and its intermediates, geranyl geranyl pyrophosphate and farnesyl pyrophosphate, is expected to have a different consequence on AβPP processing and amyloid-β (Aβ) generation. However, the use of statins (HMG-COA reductase inhibitor) has been widely implicated in slowing down the pathogenic progression of AD, while the epidemiological reports on its biological effect remains controversial. Considering this fact, the choice of drug that could maintain cholesterol homeostasis without altering its biosynthesis may yield a better therapeutic efficacy on AD. Thus, the present study focused on determining the influence of cholesterol and isoprenoids on amyloidogenic-cleavage of AβPP, in addition to resveratrol as a potent therapeutic drug in CHO-APPswe cell lines. High levels of cholesterol were found to enhance the maturation of AβPP and altered the expression and subcellular localization of ADAM10, BACE1, and PS1 thereby promoting Aβ generation, whereas high isoprenoids increased both maturation as well as amyloidogenic-cleavage of AβPP, which was evident through β-CTF production. Interestingly, the therapeutic efficacy of resveratrol maintained cholesterol homeostasis and reduced the amyloidogenic burden through its ability to enhance SIRT1 expression and thereby regulating differential expression of AD determinants.

Pages S25-S40
Iqbal Gill*, Sukhchain Kaur*, Navrattan Kaur*, Monisha Dhiman, Anil K. Mantha *These authors contributed equally to this work.
Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells
Abstract: Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer’s disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

Pages S41-S57
Zhuoran Yin*, Femke Valkenburg*, Betty E. Hornix, Ietje Mantingh-Otter, Xingdong Zhou, Muriel Mari, Fulvio Reggiori, Debby Van Dam, Bart J.L. Eggen, Peter P. De Deyn, Erik Boddeke *These authors contributed equally to this work.
Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein
Abstract: Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

Pages S59-S68
Johant Lakey-Beitia, Yisett González, Deborah Doens, David E. Stephens, Ricardo Santamaría, Enrique Murillo, Marcelino Gutiérrez, Patricia L. Fernández, K. S. Rao, Oleg V. Larionov, Armando A. Durant-Archibold
Assessment of Novel Curcumin Derivatives as Potent Inhibitors of Inflammation and Amyloid-β Aggregation in Alzheimer’s Disease
Abstract: Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.

Pages S69-S86

M.M. Srinivas Bharath
Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases
Abstract: Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transfer chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.

Pages S87-S105

Holly M. Stradecki-Cohan, Charles H. Cohan, Ami P. Raval, Kunjan R. Dave, Diego Reginensi, Rolando A. Gittens, Mehdi Youbi, Miguel A. Perez-Pinzon
Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition
Abstract: Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer’s disease. The “regenerative” capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to more disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer’s disease.

Pages S107-S131

Edward Fielder, Thomas von Zglinicki, Diana Jurk
The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State?
Abstract: Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer’s disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.

Pages S133-S150
Velmarini Vasquez, Joy Mitra, Pavana M. Hegde, Arvind Pandey, Shiladitya Sengupta, Sankar Mitra, K. S. Rao, Muralidhar L. Hegde
Chromatin-Bound Oxidized α-Synuclein Causes Strand Breaks in Neuronal Genomes in in vitro Models of Parkinson’s Disease
Abstract: Alpha-synuclein (α-Syn) overexpression and misfolding/aggregation in degenerating dopaminergic neurons have long been implicated in Parkinson’s disease (PD). The neurotoxicity of α-Syn is enhanced by iron (Fe) and other pro-oxidant metals, leading to generation of reactive oxygen species in PD brain. Although α-Syn is predominantly localized in presynaptic nerve terminals, a small fraction exists in neuronal nuclei. However, the functional and/or pathological role of nuclear α-Syn is unclear. Following up on our earlier report that α-Syn directly binds DNA in vitro, here we confirm the nuclear localization and chromatin association of α-Syn in neurons using proximity ligation and chromatin immunoprecipitation analysis. Moderate (~2-fold) increase in α-Syn expression in neural lineage progenitor cells (NPC) derived from induced pluripotent human stem cells (iPSCs) or differentiated SHSY-5Y cells caused DNA strand breaks in the nuclear genome, which was further enhanced synergistically by Fe salts. Furthermore, α-Syn required nuclear localization for inducing genome damage as revealed by the effect of nucleus versus cytosol-specific mutants. Enhanced DNA damage by oxidized and misfolded/oligomeric α-Syn suggests that DNA nicking activity is mediated by the chemical nuclease activity of an oxidized peptide segment in the misfolded α-Syn. Consistent with this finding, a marked increase in Fe-dependent DNA breaks was observed in NPCs from a PD patient-derived iPSC line harboring triplication of the SNCA gene. Finally, α-Syn combined with Fe significantly promoted neuronal cell death. Together, these findings provide a novel molecular insight into the direct role of α-Syn in inducing neuronal genome damage, which could possibly contribute to neurodegeneration in PD.

Pages S151-S160

Betty Yuen-Kwan Law, An Guo Wu, Minjun Wang, Yi Zhun Zhu
Chinese Medicine: A Hope for Neurodegenerative Diseases?
Abstract: With the increase in the proportion of aged population due to the rapid increase of life expectancy, the worldwide prevalence rate of multiple neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease has been increased dramatically. The demographic trend toward an older population has drawn the attention to new drug discovery and treatment on age-related diseases. Although a panel of drugs and/or therapies are currently available for treating the neurodegenerative diseases, side effects or insufficient drug efficacy have been reported. With the long history in prescription of Chinese medicine or natural compounds for modulating aged-related diseases, emerging evidence was reported to support the pharmacological role of Chinese medicine in ameliorating the symptoms, or interfering with the pathogenesis of several neurodegenerative diseases. This review brings evidence about today’s trends and development of a list of potential neuroprotective herbal compounds from both the traditional and modern pharmacological point of view. With future projections, the potential hope and implication of using Chinese medicine as an alternative source for novel drug discovery for neurodegenerative diseases is proposed.

Pages S161-S168

Jorge Valero, Liliana Bernardino, Filipa Cardoso, Ana Paula Silva, Carlos Fontes-Ribeiro, António Francisco Ambrósio, João Oliveira Malva
Impact of Neuroinflammation on Hippocampal Neurogenesis: Relevance to Aging and Alzheimer’s Disease
Abstract: The cognitive reserve is associated with the capacity of the brain to maintain cognitive performance in spite of being challenged by stressful degenerative insults related to aging. Hippocampal neurogenesis is a life-long process of continuous addition of functional new neurons in the memory processing circuits. Accordingly, adult hippocampal neurogenesis is increasingly seen as a key determinant of cognitive reserve robustness. On the other side, neuroinflammation, by releasing a plethora of proinflammatory cytokines and other inflammatory molecules, is increasingly shown to be one of the key determinant pathophysiological factors that negatively impact on neurogenesis and on the cognitive reserve, playing a detrimental role in hippocampal neurogenic niche dynamics and in the progression of neurodegenerative diseases, such as Alzheimer’s disease. In the present manuscript, we highlight the functional interplay between neuroinflammation, dynamics of the neurogenic niche, and spatial memory performance in healthy and age-related pathological processes, including progression of Alzheimer’s disease.

Pages S169-S193

Anantha Ram Nookala, Joy Mitra, Nitish S. Chaudhari, Muralidhar L. Hegde, Anil Kumar
An Overview of Human Immunodeficiency Virus Type 1-Associated Common Neurological Complications: Does Aging Pose a Challenge?
Abstract: With increasing survival of patients infected with human immunodeficiency virus type 1 (HIV-1), the manifestation of heterogeneous neurological complications is also increasing alarmingly in these patients. Currently, more than 30% of about 40 million HIV-1 infected people worldwide develop central nervous system (CNS)-associated dysfunction, including dementia, sensory, and motor neuropathy. Furthermore, the highly effective antiretroviral therapy has been shown to increase the prevalence of mild cognitive functions while reducing other HIV-1-associated neurological complications. On the contrary, the presence of neurological disorder frequently affects the outcome of conventional of HIV-1 therapy. Although, both the children and adults suffer from the post-HIV treatment-associated cognitive impairment, adults, especially depending on the age of disease onset, are more prone to CNS dysfunction. Thus, addressing neurological complications in an HIV-1-infected patient is a delicate balance of several factors and requires characterization of the molecular signature of associated CNS disorders involving intricate cross-talk with HIV-1-derived neurotoxins and other cellular factors. In this review, we summarize some of the current data supporting both the direct and indirect mechanisms, including neuro-inflammation and genome instability in association with aging, leading to CNS dysfunction after HIV-1 infection, and discuss the potential strategies addressing the treatment or prevention of HIV-1-mediated neurotoxicity.

Pages S195-S207
Sabapathy Periyasamy*, Mohan Sathya, Chennakesavan Karthick, Mahesh Kandasamy, Sellathamby Shanmugaapriya, Jeyavelu Tamilselvan, Kesavan Swaminathan Jayachandran, Muthuswamy Anusuyadevi* *These authors contributed equally to this work.
Association Studies of Specific Cholesterol Related Genes (APOE, LPL, and CETP) with Lipid Profile and Memory Function: A Correlative Study Among Rural and Tribal Population of Dharmapuri District, India
Abstract: Epidemiological studies state that dementia has multiple etiologies including genetic mutation, genetic variation, and environmental factors. Accumulating evidence suggests that dysregulation of cholesterol homeostasis is the major etiological factor in initiating neurodegeneration. Apolipoprotein E (APOE) polymorphic alleles and associated polymorphism of lipoprotein lipase (LPL) and cholesteryl ester transfer protein (CETP) that are important components in regulating cholesterol metabolism are implicated in neurodegenerative diseases. Therefore, the current study focused on identifying the association between several common polymorphism (viz., APOE, CETP, and LPL) to that of change in serum lipid levels and memory symptoms. Volunteer subjects aged 50 and above from rural and tribal areas of the Dharmapuri district, Tamilnadu, India were chosen for the current study and polymorphism was analyzed using PCR-RFLP. Fasting lipid profile and memory function using simplified version of Global Clinical Dementia rating were assessed. Significant difference in the major lipid profile parameters were observed (TC, TGL, LDL, VLDL) among rural and tribal populations that were associated with significant genotypic variation of APOE, CETP, and LPL. Regression analysis revealed significant risk for memory loss that are dependent on age and genetic variants like CETP. These data predict positive correlation between cholesterol-associated genes and their relationship to altered lipid profile and memory symptoms, which possibly link gene-polymorphism and susceptibility ratio for aging and dementia.

Pages S209-S220
Asokan Prema, Arokiasamy Justin Thenmozhi, Thamilarasan Manivasagam, Musthafa Mohamed Essa, Gilles J. Guillemin
Fenugreek Seed Powder Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress, and Inflammation in a Rat Model of Alzheimer’s Disease
Abstract: Alzheimer’s disease (AD) is a common neurodegenerative disorder that mainly affects the aged population and is characterized by the progressive loss of the hippocampal and cortical neurons, which results in memory and cognitive impairments. Trigonella foenum-graecum (fenugreek) has been reported to have hypoglycemic, hypocholesterolemic, hyperinsulinemic and anti-diabetic properties. Traditionally, it was used as a galactagogue and to treat anorexia, fever gastritis, gastric ulcers, and various nervous disorders. However, the neuroprotective effect of fenugreek seed powder against aluminum chloride (AlCl3) induced AD rats has not been analyzed. The result of the present study indicated that the chronic administration of AlCl3 induced significant learning and memory impairments, oxidative stress, and alterations in the protein immunocontent patterns of IDE and CDK5 (enzymes involved in the metabolism of tau and amyloid proteins), pTau, GFAP and Iba-1, IL-1β, IL-6, TNF-α, iNOS, NF-B, COX-2, CDK5, BDNF, and STAT3. Our behavioral, biochemical, and molecular studies revealed that the co-administration of fenugreek seed powder significantly attenuated the AlCl3 induced memory deficits, amyloid and tau pathology, oxidative stress, and inflammation in AD rats could be due to the synergistic action of its active components.

Pages S221-S235
Amira Zaky, Ahmad Bassiouny, Mahitab Farghaly, Bassma M. El-Sabaa
A Combination of Resveratrol and Curcumin is Effective Against Aluminum Chloride-Induced Neuroinflammation in Rats
Abstract: Background: Experimental studies have demonstrated that aluminum is an environmental toxin that induces neuroinflammation and the development of Alzheimer’s disease. Objective: In this report, we investigated the beneficial effect of a combination of resveratrol and curcumin to reduce aluminum-induced neuroinflammation. Method: We employed both an in vivo model of aluminum-induced neuroinflammation and an in vitro aluminum stimulated cultured PC-12 cells. Neuroinflammation in rats was assessed by measuring the expression of β-secretase, amyloid-β protein precursor, and γ-subunits (PS-1 and PS-2), along with the inflammatory COX-2, Il-1β, Il-1α, and TNF-α. Furthermore, we measured the expression profiles of neuro-protective Apurinic/apyrimidinic endonuclease 1 (APE1) protein and let-7c microRNA. In parallel, PC-12 cells were treated with 0.5 mM aluminum to induce a neuroinflammation-like state. In addition, curcumin effect, as a selective COX-2 expression inhibitor, was detected in a time course manner. Results: An overall significant attenuation of the inflammatory markers, as well as a decrease in the amyloidogenic mediators, was observed in resveratrol-curcumin treated rats. The therapeutic effect was also confirmed by transmission electron microscopic analysis of the brain cortexes. APE1 was significantly induced by resveratrol-curcumin combination. Both in vivo and in vitro studies indicated that Let-7c expression is significantly reduced after aluminum stimulation, an effect that was partially suppressed by co-addition of either resveratrol or curcumin and totally restored to the normal level by their combination. Conclusions: The present study clearly indicates the synergistic and therapeutic effect of a resveratrol-curcumin combination. We also show that both compounds exert beneficial effect either cooperatively or through differential molecular mechanisms in counteracting aluminum-induced neuroinflammation.