Journal of Alzheimer's Disease
Published on Journal of Alzheimer's Disease (https://www.j-alz.com)

Home > A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.

TitleA paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.
Publication TypeJournal Article
Year of Publication2012
AuthorsIliff, JJ, Wang, M, Liao, Y, Plogg, BA, Peng, W, Gundersen, GA, Benveniste, H, G Vates, E, Deane, R, Goldman, SA, Nagelhus, EA, Nedergaard, M
JournalSci Transl Med
Volume4
Issue147
Pagination147ra111
Date Published2012 Aug 15
ISSN1946-6242
KeywordsAmyloid beta-Peptides, Animals, Aquaporin 4, Astrocytes, Biological Transport, Brain, Cerebral Ventricles, Cerebrospinal Fluid, Extracellular Fluid, Imaging, Three-Dimensional, Male, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Multiphoton, Water
Abstract

Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer's disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins.

DOI10.1126/scitranslmed.3003748
Alternate JournalSci Transl Med
PubMed ID22896675
PubMed Central IDPMC3551275
Grant ListR01 NS052534 / NS / NINDS NIH HHS / United States
R01 NS075177 / NS / NINDS NIH HHS / United States
R01 NS075345 / NS / NINDS NIH HHS / United States
R01 NS078167 / NS / NINDS NIH HHS / United States
R01 NS078304 / NS / NINDS NIH HHS / United States
Top50 Topics: 
Amyloid beta
E-mail Icon
Comment Icon
  • Comment
Bookmark Icon Bookmark Recommend Icon
  • 6 members recommend
Follow Icon Follow
  • Comment
| Bookmark |
  • 6 members recommend
| Follow

Source URL: https://www.j-alz.com/content/paravascular-pathway-facilitates-csf-flow-through-brain-parenchyma-and-clearance